Command Line Parsing in VisionX V4

Like many features in C the basic programing tools for passing user specified
parameters to a program are very primitive. By using a command line parsing
function such as VXparse the programming and user friendliness of command line
arguments can be greatly improved.

There are many different ways of defining the command line syntax for a program;
two of the most popular are: position dependent and required prefixes. For example
a position dependent syntax may expressed as follows:

progl <argl> <arg2> [options]

For prog1 there must be two parameters specified as strings in the correct order
followed by any program options. Options are usually specified by a string with the
first character being a “-“. As an example of the above syntax one might write

progl infile outfile —t -fix

In the prefix style all value parameters (file-names and numeric values) have a
specific prefix; consider:

prog2 if=<argl> of=<arg2> [options]

For this style there is much more flexibility in how commands may be specified,
with the additional cost of needing to include the prefixes; for example, all of the
following statements re equivalent

prog2 if=infile of=outfile -t —fix
prog2 —fix of=outfile —t if=infile
prog2 —t —fix of=outfile if=infile

Typically command line parameters are passed to a C program as a set of character
strings and a basic code for progl may be written as follows:

#include <stdio.h>

#define ARG1 0;

#define ARG2 1;

#define OPT1 2;

#define OPT2 3;

int main(int argc, char** argv)

char* argl, *arg2;

int optiont, optionfix;

argl = argv[ARG1];

arg2 = argv[ARG2];

/* program section here involving argc, argv[OPT1] and argv[OPT2] which will
determine which of the option variables option and optionfix need to be set */

The VXparse program provides parsing of the command line and matching to
program parameters has two advantages. First, a command line syntax is
implemented that can be used with both prefix and positional parameter schemes.
Second, program documentation is conveniently supported for both the program
developer and the program user.

#include "VisXV4.h"
#include "Vutil.h"

VXparam_t par[] = { /* command line structure */
{ “if=" 0, " prog2: input file name "},
{ "of=" 0, " output file name "},
{ "-tv, 0, " Option to select text output "},
{ "-fix", 0, " Option to convert output to integers "},
{ o, 0, 0} /% list terminator */

+

#define IVAL par[@]l.val /x these defines give symbolic names */

#define OVAL par[l].val /% to the second element of the par */

#define OPTT parl2].val /% structure. For example, IVAL is the x/

#define OPTFIX par[3].val /% string matched to "if=" (if it is */
/* found) oK/

main(argc, argv)

int argc;

char xargv[];

int optiont, optionfix;

argl = IVAL;

arg2 = OVAL;
optiont=0OPTT ?1:0;
optionfix = OPTFIX? 1: 0;

The above program fully supports the prefix syntax of prog2; it also supports the
syntax of prog1. In terms of program documentation to function of each command
line parameter is describer in the third field of the VXparam_t struct. Also, if a single
“-“argument is given to the program these character strings will be printed to the
terminal as an interactive guide to the user.

The following source code is a program that illustrates the use of VXparse to parse
command line parameters; including how to convert numeric string values to
program variables and the use of option parameters.

/ /
/* Example program vpex to demonstrates the use of VXparse */
/ /

#include "VisXv4.h"
#include "Vutil.h"

VXparam_t par[] = { /* command line structure */ Example Execution of the VXparse Program vpex
{ "if=", 0, " input file name "},
{ "of=", Q, " ouput file name "1, > vpex -
{ "-i", 0, " a simple flag "}, Usage: vpex [-H] [-] [-help]
{ 'n=", 0, " an integer input value "}, [if=] input file name
{ "s=", 0, " a floating point input value "}, [of=] ouput file name
{ "xy=", 0, " input one or two values "}, [-i] a simple flag
{ o, 0, 0} /% list terminator */ [n=1 an integer input value
+ [s= 1 a floating point input value
#define IVAL parl@]l.val /x these defines give symbolic names x/ [xy=] input one or two integers
#define OVAL par[l]l.val /% to the second element of the par */
#define IFLAG par[2].val /* structure. For example, the string x*/ > vpex if=filel of=file2
#define NVAL par[3].val /x matched to "if=" (if it is found) */ input file name is filel
#define SVAL par[4].val /* may be referred to in the program */ output file name is file2
#define XYVAL par[5].val /% as IVAL */
extern double atof(); > vpex n=3 filel
input file name is filel
int main(int argc, charsx argv) n= (integer argument) is 3
int n; > vpex -i xy=2 n=1 -0 file2
float s; output file name is file2
int x, vy; Option -i has been selected
n= (integer argument) is 1
VXparse(&argc, &argv, par); /x parse the command line x/ xy= (argument pair) 2 2
if (IVAL) > vpex -H
(void) fprintf(stdout, "input file name is %s\n", IVAL); Usage: vpex [-H] [if=<inputfile>] [of=<outputfile>] [-i] [n=<value>]
if (OVAL) [s=<value>] [xy=<value>]
(void) fprintf(stdout, "output file name is %s\n", OVAL);
if (IFLAG) > vpex filel -o file2 3 8 6
(void) fprintf(stdout, "Option -i has been selected\n"); input file name is filel
n=0; /*x default for n x/ output file name is file2
if (NVAL) { n= (integer argument) is 3
n = atoi(NVAL); s= (float argument) is 8.000000
(void) fprintf(stdout, "n= (integer argument) is %d\n", n); xy= (argument pair) 6 6
s = 0.0; /x default for s *x/ > vpex 3 8 6
if (SVAL) { input file name is 3
s = (float)atof(SVAL); n= (integer argument) is 8
(void) fprintf(stdout, "s= (float argument) is %f\n", s); s= (float argument) is 6.000000
x =y = 0; /x defaults for x and y */ > vpex if= of=
if (XYVAL) /* input two values */ input file name is
switch (sscanf(XYVAL, "%d,%d", &x, &y)) { output file name is
case 2:
break; > vpex n= s= Xy=
case 1: n= (integer argument) is 0
y = X; s= (float argument) is 0.000000
break; xy= (argument pair) 0 0
default:
(void) fprintf(stderr, "Bad input to xy=\n");
exit(1);
+
exit(0);

