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ABSTRACT 
 

A fully automated computer algorithm has been developed to evaluate coronary artery calcification (CAC) from low-
dose CT scans. CAC is identified and evaluated in three main coronary artery groups: Left Main and Left Anterior 
Descending Artery (LM + LAD) CAC, Left Circumflex Artery (LCX) CAC, and Right Coronary Artery (RCA) CAC. 
The artery labeling is achieved by segmenting all CAC candidates in the heart region and applying geometric constraints 
on the candidates using locally pre-identified anatomy regions. This algorithm was evaluated on 1,359 low-dose ungated 
CT scans, in which each artery CAC content was categorically visually scored by a radiologist into none, mild, moderate 
and extensive. The Spearman correlation coefficient R was used to assess the agreement between three automated CAC 
scores (Agatston-weighted, volume, and mass) and categorical visual scores. For Agatston-weighted automated scores, R 
was 0.87 for total CAC, 0.82 for LM + LAD CAC, 0.66 for LCX CAC and 0.72 for RCA CAC; results using volume 
and mass scores were similar. CAC detection sensitivities were: 0.87 for total, 0.82 for LM + LAD, 0.65 for LCX and 
0.74 for RCA. To assess the impact of image noise, the dataset was further partitioned into three subsets based on heart 
region noise level (low<=80HU, medium=(80HU, 110HU], high>110HU). The low and medium noise subsets had 
higher sensitivities and correlations than the high noise subset. These results indicate that location specific heart risk 
assessment is possible from low-dose chest CT images. 
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1. INTRODUCTION 
 

Coronary artery calcification (CAC) is an indicator of coronary heart disease, which is the most common type of heart 
disease and is responsible for the death of over 370,000 people annually in the US1. Evaluating CAC content in a lung 
cancer screening cohort that have annual low-dose CT (LDCT) scans may be beneficial since the participants are also at 
high risk of heart disease; however, identifying and labeling the CAC regions in these scans is more challenging than in 
traditional cardiac CT scans due to cardiac motion and high image noise and for which only initial visual scoring 
techniques have been established2-3. In this paper, we present a fully automated algorithm that segments the CAC from 
low-dose chest CT scans and labels CAC by artery, which is then compared to radiologist categorical visual scores. 
 
 Tota-Maharaj et al.4 have indicated that increased number of vessels with CAC improved the diagnostic power 
of the traditional CAC Agatston score. They manually labeled and scored CAC content by 4 main arteries: Left Main 
(LM), Left Anterior Descending (LAD), Left Circumflex (LCX) and Right Coronary Artery (RCA). They also 
demonstrated that LM and LAD CAC had independent prognostic significance in predicting mortality. Automated 
labeling of CAC by artery has been developed for ECG-triggered cardiac CT scan5-6. Ding et al.5 used atlas registration 
and active contours to segment heart region and surrounding vessels. Then CACs were labeled using a knowledge-based 
region separation algorithm. Wolterink et al.6 used a feature classification method to label individual CAC. Both 
algorithms combined LM and LAD CAC into one label due to the difficulty to visually distinguish CAC at the border of 
LM and LAD6 and comparison in these studies was made with semi-automated CAD Agatson scores. 
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 In the context of LDCT, there have been several studies for obtaining the overall CAC content7-9. This work 
extends our previous algorithm9 to evaluate CAC content in 3 main artery groups in LDCT: LM + LAD, LCX and RCA. 
CAC candidates were automatically segmented and partitioned into these 3 groups and 3 types of automated CAC scores 
(Agatston-weighted, volume, and mass) were computed for all CACs and by arteries. The algorithm was evaluated on a 
screening cohort of 1,359 ungated LDCT scans. In each scan, CAC content was visually scored per artery by a 
radiologist using the recommended categorical scoring method3. The visual scores were compared to the automated 
CAC scores and the Spearman correlation coefficient was computed. Detection sensitivities and specificities were also 
computed. To study the effect of image noise on CAC detectability, the cohort was further partitioned into 3 subsets 
based on heart region noise level and the same measurements were performed. 
 
 

2. METHODS 
 

The algorithm consists of the following steps: 1) image filtering and thresholding to obtain all CAC candidates in the 
heart region; 2) excluding non-CAC candidates using geometric constraints; 3) labeling remaining CAC candidate based 
on geometric constraints with respect to local labeled anatomy. 
 
(1) Image filtering and thresholding for CAC candidate extraction 
Low-pass image filtering has been optimized to remove the impact of noise without filtering out the evidence for CAC. 
Heart region noise is automatically measured as the pixel standard deviation in the segmented heart region. Currently a 
3x3 mean filter is used for images with moderate to high noise level (heart region noise<=150HU) and a 5x5 mean filter 
is used for those with very high noise level (heart region noise above 150HU) based on empirical evidence. 
Threshholding is set at the standard threshold of 130 HU in the superior region of the heart and this is increased to 180 
HU in the inferior region due to increased noise. 
 
(2) Exclusion of non-CAC candidates 
Common types of non coronary artery calcification and high-intensity artifacts are excluded based on geometric 
locations. They include: aorta calcium on the segmented aorta surface, calcium or artifacts in the transition region 
between lung and heart, aortic valve calcium close to ascending aorta root region, and mitral valve calcium in the 
posterior heart region. Figure 1 shows examples of excluded non-CAC candidates. 
 

                
                    (a)                                                (b)                                              (c)                                             (d) 
Fig. 1. Examples of excluded non-CAC candidates (green regions indicated by red arrows): (a) calcium in the transition region 
between lung and heart; (b) aortic calcium; (c) aortic valve calcium; (d) mitral valve calcium. 
 
(3) Labeling of CAC candidates by artery 
CAC labeling relies on the geometric constraints from pre-segmented anatomy regions such as the aorta, heart and 
pulmonary trunk9-10. The general labeling model is shown in Figure 2 (a) and (b). Labeling starts from the most obvious 
and robustly identified CAC regions (RCA and LM + LAD) and use them to provide constraints to the more subtle CAC 
regions. Details are described below. 
 
1: Labeling of RCA CAC. 
The RCA is well defined by the inferior ascending aorta (AAi) and the inferior heart (Hrti). It is also constrained by a 
smaller distance to the right lung compared to the left lung (Rldist>3*Rrdist) as shown in Figure 2 (c)). 
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2: Labeling of LM + LAD CAC adjacent to aorta. 
For the left CACs, the algorithm first searches for CAC adjacent to the ascending aorta (AA) in its posterior left region 
(AAang=4 in Figure 2(f)). This belongs to LM + LAD and is usually the most easily identified CAC on the left side and 
can provide a robust constraint to other left CACs. CACs in this region are constrained by a small distance to AA 
(AAdist) as well as the superior heart (Hrts) and the inferior AA (AAi + d1). They are also constrained by a smaller 
distance to the left lung (Lldist<Lrdist). Figure 2 (d)-(f) show the model in this region. 
 
3: Labeling of other LM + LAD and LCX CAC. 
If CAC is detected in step 2, a simple anterior/posterior partition model is used to separate the remaining CACs into 
LAD and LCX (see Figure 3 (a)). However, if no CAC is detected in step 2, CAC adjacent to pulmonary trunk (see 
Figure 3 (b)) or CAC anterior to AA center (see Figure 3 (c)) is used to establish the anterior/posterior partition between 
LAD and LCX. 
 

           
                 (a)                                               (b)                                                    (c) 
 

                
                        (d)                                                           (e)                                                       (f) 
Fig. 2. Illustration of geometric model for CAC labeling. (a) and (b) show the locations of coronary arteries in heart with ascending 
aorta (AA) and pulmonary artery trunk (PT). (c) shows the RCA CAC labeling model. (d) and (e) show the labeling model for CAC 
adjacent to AA while (f) illustrates the AAang computation. 
 

           
                             (a)                                                               (b)                                                               (c)                                           
Fig. 3. Labeling of other left CACs in different scenarios: (a) shows the partition model when LM + LAD CAC adjacent to AA exists; 
(b) shows the partition model using CAC adjacent to PT; (c) shows the partition model using CAC anterior to AA center. 
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3. DATA 
 

The dataset consists of 1,437 CT scans from different subjects. Scans with severe metal implant artifacts (18 scans) or 
unacceptable heart region segmentation (60 scans) were excluded. The remaining 1,359 scans were used for analysis and 
evaluation. All scans were taken using SIEMENS Emotion16 scanners and reconstructed with a B70s kernel at a slice 
thickness of 2mm. The scans were acquired with either 110 or 130 kVp and a current ranging from 50 to 183 mA (1,137 
cases with a current ≤ 84 mA). 
 

Each scan was assigned a categorical visual CAC score for each of the four arteries (LM, LAD, LCX, RCA) by 
a radiologist using the criteria established by Shemesh et al.3. The score categories are: none=0, mild=1, moderate=2, 
extensive=3. In our assessment, the visual scores of LM and LAD were added together for LM + LAD CAC assessment. 
The visual scores of all four arteries were added together for total CAC assessment. Figure 4 shows example cases with 
4 different visual scores for each artery. 
 

                                        
            LM=0                                           LM=1                                    LM=2                                     LM=3 
 

                                              
         LAD = 0                                     LAD=1                                     LAD=2                                  LAD=3 
 

                                         
            LCX=0                                     LCX=1                                        LCX=2                                   LCX=3 
 

                               
             RCA=0                                        RCA=1                                    RCA=2                                  RCA=3 
Fig. 4. Example cases with different levels of visual scores for each artery: none=0, mild=1, moderate=2, extensive=3. Red arrows 
indicate the artery (CAC) location in each image. 
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4. EXPERIMENTS 
  
Two experiments were performed to evaluate the algorithm. The first experiment evaluated the agreement between the 
categorical visual scores of the radiologist and three automated CAC scores (an Agatston-weighted score, a volume 
score, and a mass score) by computing their Spearman correlation coefficient R (total and by artery). The second 
experiment determined the labeling performance of the system by evaluating the sensitivity, specificity, positive 
predictive value and negative predictive value of CAC labeling by artery. For each artery, a true positive (TP) occurs 
when both the automated and visual scores are non-zero; a false positive (FP) occurs when only the automated score is 
non-zero; a false negative (FN) occurs when only the visual score is non-zero and a true negative (TN) occurs when they 
are both zeroes. Sensitivity is defined as TP/(TP+FN), specificity is defined as TN/(FP+TN), positive predictive value 
(PPV) is defined as TP/(TP+FP), and negative predictive value (NPV) is defined as TN/(TN+FN). 
 
 Higher noise level usually leads to the decrease of sensitivity and overall performance of the algorithm.  In 
order to evaluate the impact of noise on the outcome, the cohort (1,359 scans) were further divided into three subsets 
based on the noise level: low noise group 398 cases <= 80HU, medium noise group 499 cases = 80-110HU, and high 
noise group 462 cases > 110HU. Noise level was automatically measured in the segmented heart region by taking the 
standard deviation. The threshold of 80HU and 110HU were chosen so that each subset would contain similar number of 
cases. The two experiments were repeated for all subsets and the same set of results were reported. 
 
 

4. RESULTS 
 

Results on the whole dataset with 1,359 scans are shown in Table 1 and Table 2. Table 1 shows correlations with visual 
scores and Table 2 shows sensitivities, specificities, positive predictive values and negative values for all CACs and by 
artery. Statistics of the Agatston-weighted scores are summarized in Table 3. 
 
Table 1. Spearman correlation coefficient R between visual scores and automated Agatston-weighted, volume and mass 

scores for all CACs and by artery. 
Spearman R #Cases All CACs LM+LAD CAC LCX CAC RCA CAC 
Visual v.s. Agatston-weighted 1,359 0.87 0.82 0.66 0.72 
Visual v.s. Volume 1,359 0.88 0.82 0.66 0.73 
Visual v.s. Mass 1,359 0.87 0.82 0.66 0.72 

 
Table 2. Labeling sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for all 

CACs and by artery. 
Metric #Cases All CACs LM + LAD CAC LCX CAC RCA CAC 
Sensitivity 1,359 0.87 0.82 0.65 0.74 
Specificity 1,359 0.84 0.89 0.92 0.88 
PPV 1,359 0.94 0.95 0.86 0.83 
NPV 1,359 0.67 0.64 0.77 0.81 

 
Table 3. Statistics of Agatston-weighted scores for all CACs and by artery. 

Agatston-weighted #Cases All CACs LM + LAD CAC LCX CAC RCA CAC 
Mean 1,359 391.9 213.5 78.76 99.7 
Median 1,359 71.0 35.0 0 0 
Range 1,359 [0, 6328.0] [0, 3657.0] [0, 4105.0] [0, 4836.0] 
Standard-deviation 1,359 762.5 428.1 321.8 321.9 

 
Results on the three subsets with different noise levels are in Table 4 and 5 and Figure 6. Among the 1,359 

scans, the mean noise level in the heart region is 102HU as shown in Figure 5 (median = 96HU, range = [39HU, 
313HU], standard deviation = 36HU). 
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Fig. 5. Histogram of heart region noise distribution on the whole dataset (1,359 cases). 
 
Table 4. Spearman correlation coefficient R between visual scores and automated Agatston-weighted, volume and mass 
scores for all CACs and by artery for the three noise level subsets. Low noise = 1 (398 cases), medium noise = 2 (499 

cases), high noise = 3 (462 cases). 
Spearman R All CACs LM+LAD CAC LCX CAC RCA CAC 
 1 2 3 1 2 3 1 2 3 1 2 3 
Visual v.s. Agatston-weighted 0.87 0.90 0.85 0.83 0.85 0.80 0.68 0.65 0.67 0.74 0.74 0.69 
Visual v.s. Volume 0.88 0.90 0.86 0.83 0.85 0.80 0.68 0.65 0.68 0.75 0.74 0.69 
Visual v.s. Mass 0.87 0.89 0.85 0.83 0.85 0.80 0.68 0.65 0.67 0.74 0.73 0.69 

 
Table 5. Labeling sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for all 
CACs and by artery for the three noise level subsets. Low noise = 1 (398 cases), medium noise = 2 (499 cases), high 

noise = 3 (462 cases). 
Metric All CACs LM+LAD CAC LCX CAC RCA CAC 
 1 2 3 1 2 3 1 2 3 1 2 3 
Sensitivity 0.90 0.89 0.82 0.87 0.85 0.74 0.66 0.66 0.63 0.74 0.78 0.70 
Specificity 0.84 0.86 0.83 0.84 0.91 0.91 0.94 0.90 0.92 0.90 0.87 0.88 
PPV 0.94 0.95 0.94 0.93 0.96 0.96 0.88 0.85 0.87 0.84 0.82 0.82 
NPV 0.74 0.72 0.57 0.74 0.70 0.53 0.80 0.77 0.75 0.82 0.84 0.78 

 
 

      
Fig. 6 Bar plots to illustrate the difference of correlation and sensitivity between the three noise groups. 
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Pearson Chi-squared test was used to compare the sensitivity differences. The following sensitivities were 
significantly different from each other (p-value < 0.05): all CACs low v.s. high (p = 0.008); all CACs medium v.s. high 
(p = 0.009); LM + LAD CACs low v.s. high (p < 0.001); LM + LAD CACs medium v.s. high (p < 0.001). 

 
 

5. DISCUSSION 
 

Segmenting and labeling of CAC in LDCT is challenging because the actual coronary arteries are not detectable unless 
they contain (usually a small amount of) calcium. The very high noise level present in these scans also makes it hard to 
extract any representative image features from these small CAC regions. Thus, the algorithm labels CACs based on their 
geometric relationship with respect to other pre-identified organs. The most robustly identified CACs are first labeled, 
based on which the locations of the remaining CACs are identified. The algorithm shows agreement with visual scores 
(R=0.82, 0.66 and 0.72 by artery). Sensitivities were 0.82, 0.65, and 0.74 by artery. Figure 7 shows two examples of 
correctly identified CACs. 

                                

                  
                     (a)                                                  (b)                                                 (c)                                                (d) 
Fig. 7. Examples of correctly labeled CAC in two cases (upper and lower rows). (a) and (b) shows a coronal and a sagittal view with 
heart and aorta region in light green, LM + LAD CAC in red, LCX CAC in magenta, and RCA CAC in blue. (c) and (d) shows axial 
slices with labeled CACs using the same color scheme. 
 

CAC segmentation errors occur in a small number of cases where geometric location alone cannot distinguish 
CAC from other calcium in proximity. In these cases, the automated algorithm over-segments by including non-coronary 
artery calcium close to coronary arteries (see Figure 8 (b)). CAC labeling errors sometimes occur between LM + LAD 
and LCX CACs. This is most likely to happen where LM branches into LAD and LCX (see Figure 8 (c)). 

                     
                     (a)                                                   (b)                                                             (c) 
Fig. 8. Examples of CAC segmentation and labeling errors. (a) and (b) show labeled LCX CAC in magenta. (a) is correctly labeled 
while (b) is a false positive. (c) shows LCX CAC (inside blue circle) mistaken as LM + LAD CAC. 
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CAC detection sensitivities of the low and medium subsets were significantly different from that of the high 

noise subset for all CACs and LM + LAD CACs (see Table 4 and 5). There was no significant difference between the 
low and medium noise subsets. The overall sensitivity decreased from 0.89 to 0.82 and the correlation coefficient 
decreased from 0.87 to 0.85. Among the three artery groups, LCX CACs had the lowest correlation and detection 
sensitivity. There are a number of reasons: LCX contained the smallest amount of calcium (see Table 3) and therefore 
was most easily impacted by image filtering and image noise; a large amount of LCX CACs located near the branching 
point of LM (see Figure 8 (c)), causing confusion and error. 
 
 

6. CONCLUSION 
 

In conclusion, a fully automated algorithm has been developed to segment and label CAC from LDCT scans. Evaluated 
on 1,359 LDCT images, the fully automated algorithm detected most CAC regions and the automated Agatston-
weighted, volume and mass scores showed similar good correlation with the categorical visual scores assigned by the 
radiologist (Agatston-weighted score R=0.87 for total, and 0.82 for LM+LAD, 0.66 for LCX and 0.72 for RCA). The 
labeling algorithm has the potential to aid cardiac health assessment by providing the additional information of CAC 
scores in individual arteries in the context of low-dose ungated CT images of the chest, thus serving the large at-risk 
population that is undergoing lung cancer screening. 
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