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ABSTRACT  

Cardiac visceral fat was segmented from low-dose non-contrast chest CT images using a fully automated method. 
Cardiac visceral fat is defined as the fatty tissues surrounding the heart region, enclosed by the lungs and posterior to the 
sternum. It is measured by constraining the heart region with an Anatomy Label Map that contains robust segmentations 
of the lungs and other major organs and estimating the fatty tissue within this region. 

The algorithm was evaluated on 124 low-dose and 223 standard-dose non-contrast chest CT scans from two public 
datasets. Based on visual inspection, 343 cases had good cardiac visceral fat segmentation. For quantitative evaluation, 
manual markings of cardiac visceral fat regions were made in 3 image slices for 45 low-dose scans and the Dice 
similarity coefficient (DSC) was computed. The automated algorithm achieved an average DSC of 0.93. Cardiac visceral 
fat volume (CVFV), heart region volume (HRV) and their ratio were computed for each case.  The correlation between 
cardiac visceral fat measurement and coronary artery and aortic calcification was also evaluated. Results indicated the 
automated algorithm for measuring cardiac visceral fat volume may be an alternative method to the traditional manual 
assessment of thoracic region fat content in the assessment of cardiovascular disease risk. 
 
Keywords: Cardiac visceral fat, low-dose CT, computer-based segmentation, aortic calcification, coronary artery 
calcification. 
 

1. INTRODUCTION  
Fat in the thoracic heart region is shown to be associated with coronary calcification and various cardiovascular 
diseases1-6. Manual measurement of pericardial fat from CT images is commonly used for cardiac disease risk 
assessment1-6. However, in low-dose non-contrast CT images, the pericardium region is not always visible. Therefore in 
this study, an alternative approach is adopted to measure cardiac visceral fat. Cardiac visceral fat (CVF) is defined as 
fatty tissues surrounding the heart region enclosed by lungs and posterior to the sternum. Its upper limit is at the 
pulmonary artery level and its lower limit is the top of the diaphragm. Compared to pericardial fat, the anterior boundary 
of CVF is the sternum instead of the pericardium region, i.e. CVF includes pericardial fat as well as fat between the 
pericardium and the sternum region. It has been shown that fat in thoracic region is associated with coronary calcium1, 4  
and metabolic risk3. Therefore, CVF measurement may be useful in cardiac disease risk assessment. 

The fully automated CVF algorithm employs a pre-computed anatomy label map (ALM), which contains segmentation 
of lungs, bony structures, aorta, and all fatty tissues within the body region. The “muscular-soft tissue” in the heart 
region is segmented using a rule-based approach7. Then the segmented heart and other organs provide a constrained 
region of interest for CVF, in which all the fatty tissues are extracted and measured. The CVF to heart volume ratio is 
also measured. For evaluation, visual inspection is first used to evaluate the overall segmentation quality. Then the 
automatically computed fat region is compared to manual markings in selected image slices and the Dice similarity 
coefficient is computed. 
 

2. METHODS 
2.1 Heart region segmentation  

Robust segmentation of the mediastinum region in low-dose CT is particularly challenging because of the high levels of 
image noise. The muscular heart region is segmented using geometric constraints from other segmented organs7. It 
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provides a geometrically constrained region enclosed by lungs, bony structures, aorta and fatty tissues. The upper limit 
of this region is constrained by the location of pulmonary artery and the lower limit by the superior margin of the 
diaphragm, which is obtained by analyzing lung profiles11. Figure 1 shows examples of heart region segmentation7. 

 

                      
Figure 1 Two cases that demonstrate the heart region segmentation. In each case, the left image shows a 2D slice with the segmented 
heart (in green) and aorta (in red) overlaid on the original image and the right image shows the 3D visualization of the segmented 
heart (in green) together with aorta (in red) and lungs (in pink). 

 
2.2 Cardiac visceral fat segmentation 

Cardiac visceral fat (CVF) segmentation is based on the pre-segmented fatty tissues within the body region. The whole 
body fat segmentation employs a local noise aware algorithm designed for low-dose CT12. Then the CVF region is 
modeled using the following method: 

(1) Constrain the CVF region to be at the same level of the segmented heart; then use the lungs, sternum, descending 
aorta or vertebrae to constrain the region from left, right, anterior and posterior sides (see Figure 2 (a) and Figure 3(a)). 

(2) Refine the fat region between sternum and lungs in each axial slice. If the left and right lungs are connected, 
eliminate all fat between sternum and lungs. Otherwise draw a horizontal line posterior to the sternum at location . 

Shift  towards the posterior region until it intersects with two lungs at location , . Denote the two intersection 

points as  and  and the distance between the two lungs as .  

(3) Keep shifting the horizontal line towards the posterior region until it reaches the center of the lungs at . Measure 

two lungs’ distance  at each location, then select  such that . 

Model the fat region between sternum and lungs using a rectangular 
 (see Figure 2(b) red box). 

(4) Perform a connect component analysis to all the fat voxels in the constrained region. Only keep all fat voxels that are 
connected to the segmented heart, thus eliminating all non-cardiac fat (see Figure 2(b) red and black boxes and Figure 3 
(b)). 

yi
yi yk k ≤ i

lk rk dk =| lk − rk |

ym
dk,dk−1,... yp yp = argmin

p
{dp | dp =| lp − rp |},m ≤ p ≤ k

{left = lp, right = rp,anterior = yk, posterior = yp}
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Figure 2 Illustration of CVF region in an axial slice. Fat region is modeled between sternum and lungs. From left to right: initial 
region (black box); final fat region with red box showing the modeled region between sternum and lungs. Together the red and black 
boxes show the general CVF region. 

 

            
                                                       (a)                                                                                                            (b) 

Figure 3 CVF segmentation (3D visualizations in coronal and sagittal views): (a) is the initial fat region (corresponding to Figure 2 
(a)) and (b) is the final fat region (corresponding to Figure 2 (b)). 
 

3. EXPERIMENTS 
3.1 Datasets 

The CVF segmentations were evaluated on 2 datasets with 347 images in total. The first is the VIA-ELCAP public 
dataset13 and contains 50 low-dose chest CT scans, among which 5 cases were excluded due to serious implant artifacts. 
The second dataset is the LIDC public dataset14, which contains 335 low-dose and standard-dose non-contrast CT 
images, among which 33 cases were excluded due to serious implants artifacts, patient prone positions, abnormal 
anatomical structures or excessive image noise. In total 45 low-dose scans were used from VIA-ELCAP; 79 low-dose 
and 223 standard-dose chest CT scans were used from LIDC. All scan images are non-contrast. 

3.2 Experiments and evaluation 

The CVF segmentation was evaluated both visually and quantitatively. The segmented fat was overlaid on the axial 
image slices and visual inspection was performed to see whether it contained significant segmentation inaccuracy. Then 
manual markings of an enclosed CVF region boundary were performed in 3 image slices for each case. Assuming the 
first and last slice containing CVF was y1 and y2 respectively. The 3 marked slices were located at: 10mm below y1; slice 
at (y1+y2)*0.5; 10mm above y2. Ground truth fat voxels were extracted based on the markings and the Dice similarity 
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coefficient (DSC) between automated and manual regions was computed. The DSC is defined as twice the intersection 
between the automated and manual areas divided by the sum of the two areas. 

In addition, the CVF volume (CVFV) and its volume to heart volume ratio (CVFV/HRV) were computed and compared 
to the results reported in the literature. Further the correlation of this measure with the coronary artery calcification 
(CAC) and aortic calcification (AC) level was assessed. CAC and AC were segmented and measured in terms of 
Agatston scores (AS) and volume scores (VS) using the automated methods described in our previous works7, 15. 
Correlation was computed after taking logarithm transforms of the scores and fat measurements. 
 

4. RESULTS 
Based on visual inspection, out of 347 evaluation cases, 343 cases had good CVF segmentation while 4 cases had 
significant over-segmentation close to diaphragm region. This was caused by the incorrect estimation of diaphragm 
location. Using all evaluation cases, the max, mean, minimum and standard deviation of CVF volume (CVFV) was 
respectively 331.70cm3, 103.98cm3, 8.62cm3 and 63.62cm3. CVF to heart volume ratio (CVFV/HRV) was also 
computed. Its max, mean, minimum and standard deviation were respectively 1.15, 0.24, 0.01 and 0.15. Figure 4 shows 
example cases with different amount of CVF and Figure 5 shows the distribution of CVF and CVFV/HRV for all 
evaluation cases. 

 
                                     Case 1 CVF = 327.2cm3, CVFV/HRV = 1.06. 

 

                                     Case 2 CVF = 21.68cm3, CVFV/HRV = 0.03. 

Figure 4 Example cases: case 1 had a high CVFV/HRV of 1.06 and case 2 had a low CVFV/HRV of 0.03. 
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Figure 5 Histogram of CVFV and CVFV to HRV ratio. 

For the 45 cases with manual markings, the mean DSC was 0.93 with a maximum of 0.99 and a minimum of 0.81. 
Disagreement between automated and manual segmentation usually occurred in the anterior region. The correlation of 
CVFV/HRV with CAC was 0.10 using the Agatston score (AS) and the volume score (VS) (p-value=0.51). The 
correlation of CVFV/HRV with AC was 0.25 using AS and VS (p-value=0.09). The correlation of CVFV with the AC 
was 0.25 using AS and VS (p-value=0.09). The CVFV was not correlated with CAC. 
 

 

5. DISCUSSION 
In general the automated algorithm performed well in the segmentation of CVF with an average DSC of 0.93. Compared 
to manual markings, the automated algorithm sometimes under-segmented CVF in the anterior region. Figure 6 gives 4 
examples of CVF segmentation compared to manual markings. The first two examples had high DSC (0.99 and 0.95) 
with only slight disagreement with the manual regions. The last two examples had relatively lower DSC (0.84 and 0.81) 
and larger difference in the anterior regions. Two main reasons were: 1) the anterior region was modeled as a straight 
line in the algorithm, which was sometimes very different from the actual boundary between bony structures and soft 
tissues; 2) the sternum region was incorrectly estimated. 

The mean CVF volume was 103.98cm3 (standard deviation 63.62cm3), which was smaller than the thoracic fat volume 
reported by Dey et al1 and Tamarappoo et al2 (189.6 ± 109.1 cm3, 196.1 ± 82.7 cm3). This might be caused by the more 
general thoracic region defined in their works1-2. The mean CVFV/HRV was 0.24 (standard deviation 0.15), which was 
similar to the pericardiac fat to cardiac volume ratio reported by Day et al16 (0.08-0.63). 

The cases with extreme fat to heart ratio (CVFV/HRV < 0.1 or CVFV/HRV > 0.6) were visually examined. It was 
observed that many cases with high fat to heart volume ratio (CVFV/HRV > 0.6) were the lung appeared to be not fully 
inspired or had lung region abnormalities, where the diaphragm location was very high and heart volume was 
significantly under-estimated. Figure 7 shows two cases with high CVFV to HRV ratio, both of which had partial lung 
resection, which resulted in the inaccurate estimation of diaphragm location. There was no obvious issue in cases with a 
low CVFV to HRV ratio. 

Neither CVFV or CVFV/HRV was correlated with CAC scores with statistical significance. They were both weakly 
correlated with the AC scores (correlation 0.25, p-value=0.09). This result was similar to what was reported by Dey et 
al1, where the thoracic fat volume was 0.29 correlated with the coronary calcium score with a p-value of 0.39, and 
therefore not statistically significant. 
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DSC = 0.99 

                     

DSC = 0.95 

                     
DSC = 0.84 

                     

DSC = 0.81 

Figure 6 Examples showing automated CVF compared to manual markings. CVF segmentation is overlaid on the intensity images. 
Overlapping fat voxels are in red; fat voxels only existing in the automated segmentation are in green and fat voxels only existing in 
manual markings are in blue. 
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CVFV/HRV = 0.72                CVFV/HRV = 0.68 

Figure 7 Examples cases where CVFV/HRV was likely to be overestimated due to inaccurate diaphragm location. 

6. CONCLUSION 
Cardiac visceral fat was automatically segmented in low-dose non-contrast chest CT scans. For the 347 low-dose and 
standard-dose CT scans for evaluation, 343 (98.8%) cases had good segmentation results visually. Compared to manual 
markings on 45 low-dose scans, the algorithm achieved an average DSC of 0.93. This indicates that the fully automated 
method may be a substitute for traditional manual marking assessment of cardiovascular fat. 
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