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ABSTRACT 
 
Coronary artery calcification (CAC) measurement from low-dose CT images can be used to assess the risk of coronary 
artery disease. A fully automatic algorithm to detect and measure CAC from low-dose non-contrast, non-ECG-gated 
chest CT scans is presented. Based on the automatically detected CAC, the Agatston score (AS), mass score and volume 
score were computed. These were compared with scores obtained manually from standard-dose ECG-gated scans and 
low-dose un-gated scans of the same patient. 
 

The automatic algorithm segments the heart region based on other pre-segmented organs to provide a coronary 
region mask. The mitral valve and aortic valve calcification is identified and excluded. All remaining voxels greater than 
180HU within the mask region are considered as CAC candidates.  

 
The heart segmentation algorithm was evaluated on 400 non-contrast cases with both low-dose and regular dose 

CT scans. By visual inspection, 371 (92.8%) of the segmentations were acceptable. The automated CAC detection 
algorithm was evaluated on 41 low-dose non-contrast CT scans. Manual markings were performed on both low-dose and 
standard-dose scans for these cases. Using linear regression, the correlation of the automatic AS with the standard-dose 
manual scores was 0.86; with the low-dose manual scores the correlation was 0.91. Standard risk categories were also 
computed. The automated method risk category agreed with manual markings of gated scans for 24 cases while 15 cases 
were 1 category off. For low-dose scans, the automatic method agreed with 33 cases while 7 cases were 1 category off. 
 
Keywords: heart segmentation, coronary artery calcification measurement, automated computer algorithm, low-dose 
non-contrast CT 
 

1. INTRODUCTION 
!
This paper presents a fully automated algorithm to segment the heart region and detect coronary artery calcification 
(CAC) from low-dose, non-contrast, non-ECG-gated chest CT scans. It has been shown that CT is an accurate method to 
quantify coronary plaque burden and calcification measurements on CT correlate well with histological analyses [1]. 
Shemesh et al. [2] have shown that CAC score can be derived from un-gated low-dose MDCT images and this 
information can contribute to risk stratification of coronary artery disease. Shemesh et al. [3] have also shown that visual 
assessment of CAC on low-dose CT scans provides clinically relevant information for predicting the risk of 
cardiovascular death.  
 

An anatomy-based approach is employed for heart segmentation. It is similar to the algorithm presented by 
Reeves et al. [4] but with an improved pre-segmentation of adjacent organs. In previous work, Isgum et al. [5] performed 
heart segmentation in low-dose non-contrast CT images using a multi-atlas based approach. They also performed CAC 
detection and measurement in low-dose CT images in [6], [7] and [8] using the geometrical and spatial features of CAC. 
Compared to that work, the method in this paper does not require manually segmented templates, thus making the 
algorithm more efficient and easier to extend to larger datasets. 
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2. METHODS 
 

Heart segmentation from low-dose non-contrast CT scans is very challenging due to the presence of image noise and the 
lack of intensity changes between heart region and adjacent tissues. To achieve robust segmentation our algorithm 
models the heart as an entity spatially enclosed by other well-defined anatomical entities. By robustly identifying the 
surrounding entities, the remaining enclosed region is considered as the heart region. This method builds on the approach 
presented in [4], in which heart region was segmented based on the pre-segmented bone, airways, lungs as well as the 
estimated diaphragm. The new method, in addition, employs the pre-segmented aorta, fatty tissue and pulmonary artery, 
thus better capturing the location of heart. Some of the entities can be directly obtained from the pre-computed Anatomy 
Label Map (ALM), a robust chest segmentation infrastructure developed by the Cornell VIA group [9]. The pre-
segmented organs include airways [10], lungs [11], bone [12], aorta [13] and fatty tissue [14]. Heart segmentation 
involves the following steps: 
 

(1) Obtain the pre-segmented lung, bone and fatty tissue. Together they provide constraints to the heart region from 
left, right, anterior and posterior sides (see Figure 1). 

(2) Compute the location of the top of diaphragm similarly as in [4] by analyzing lung profiles. The top of the 
diaphragm is considered as the inferior margin of the heart. 

(3) Obtain the pre-segmented aorta. The descending aorta provides further constraint to the posterior margin of the 
heart.  

(4) Based on the segmented aorta, the general location of the pulmonary artery is estimated. Using the estimated 
pulmonary artery, the superior margin of the heart is determined. 

(5) Using all the constraints in step (1) - (4), limit heart location to the enclosed unlabeled region. Then select the 
largest connected component as the segmented heart. 

 

           
Figure 1. Left: original CT scan; right: segmented anatomical entities overlaid on the original image, lungs in magenta, bone in blue, 
aorta in red, fatty tissue in yellow and heart region in green. 
 

Step (1) provides robust constraint to heart location while step (2), (3) and (4) are approximations of superior 
and inferior margins of the heart due to lack of boundary evidence in low-dose images. Step (5) is used to eliminate the 
voxels outside the actual heart region. In step (4), the pulmonary artery location is estimated by the following algorithm: 

 
(1) Determine the left right extent of pulmonary artery based on the left right extent of the aorta. 
(2) Consider the CT image from the sagittal viewpoint. In the leftmost sagittal plane of pulmonary artery, 

identify a seed point inside the pulmonary artery lumen by fitting the largest circle into the unlabeled 
region shown in figure 2(a) and 2(c). The center of the largest circle is the desired seed point. Similarly, in 
the rightmost sagittal plane, find a seed point inside its lumen by largest circle fitting into the unlabeled 
region in figure 2(b) and 2(e). 

(3) By connecting the two seed points to form a centerline, the general location of the pulmonary artery is 
constrained. Then based on the two largest circles, the radius of pulmonary artery is estimated. The 
centerline and radius will determine a cylinder, which is used to represent the pulmonary artery (see figure 
2(d)). 
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Figure 2. Illustration of pulmonary artery estimation. In all five images the segmented organs are overlaid on the original CT image in 
different colors. a and b are respectively the two sagittal slices containing the left and right seed points. c and e correspond to a and b 
respectively. They contain the largest circle (blue) fit into the region of interest as well as aorta (red) fatty tissues (yellow) airway 
(light purple below aorta) and bony structures (multiple colors). d shows the estimated pulmonary artery (blue) with aorta, airway and 
bones. Note that all images are in anisotropic space. 
 

This method is only able to estimate the general location and shape of the pulmonary artery. However it is 
sufficient to constrain the superior margin of the heart region. Figure 3 shows examples of segmented heart with 
segmented aorta, lungs, bone and estimated pulmonary artery in coronary and sagittal views. 

 
Based on the segmented heart, the detection of CAC is performed using the following algorithm: 
 

(1) Slightly enlarge heart region by dilation to include pericardial region to obtain a coronary region that encloses 
all coronary arteries. 

(2) Filter the original CT image using a filter F=3x3x3 mean and threshold it at intensity value I=180HU. Apply 
the coronary mask to the processed image to obtain potential coronary calcification candidates. Select calcified 
voxels with a size larger than n=5 voxels. 

(3) Determine the approximate aortic valve region by projecting the segmented aorta through heart and eliminate 
all calcification in that region as aortic valve calcification. 

(4) Determine the approximate mitral valve region by searching the left posterior quadrant of heart. Eliminate all 
calcification candidates larger than m=1000 voxels in this region as mitral valve calcification. 
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Figure 3. 3D visualization of segmented heart region (green), aorta (red), pulmonary artery (blue), lungs (light pink) and bone (light 
grey) from 3 different cases. Top row shows the coronary view while bottom row shows the sagittal view of the corresponding case. 
 
 

Step (1), (3) and (4) are designed to find the potential spatial regions for possible CAC while eliminating 
calcification that does not belong to CAC. Step (2) is designed to deal with the high level of noise present in low-dose 
CT images. Figure 4 compares the CAC detection results using different filters F and threshold I. It is observed that with 
standard calcium threshold 130HU and no pre-filtering of the images, most detected CAC are actually noise pixels (No 
filtering, I=130HU). A mean filter of size 3x3x3 is able to eliminate most noise voxels with only losing a few true CAC 
voxels in the superior heart region, but in the inferior heart region where the noise level is even higher, a lot of noise 
voxels are still mis-identified as CAC (F=3x3x3 mean, I=130HU). Eventually, with pre-filtering and an elevated 
threshold of 180HU, almost all noise voxels are eliminated while the majority of CAC voxels are still preserved 
(F=3x3x3 mean, I=180HU). 

 
Since neither the mitral valve nor the aortic valve region can be visually distinguished from surrounding tissues 

in non-contrast scans, their locations can only be approximated. The pre-segmented aorta typically does not extend to the 
aortic valve region. However, the aortic valve is usually located a short distance below the end of the ascending aorta. It 
was also observed that this region does not contain coronary arteries. Therefore, the segmented ascending aorta is 
projected down through the heart region and all calcifications covered by the projection are eliminated. Similarly, 
calcifications in the mitral valve region can be eliminated by searching the left posterior quadrant of heart. Since mitral 
valve calcification usually has a much larger volume than CAC, only calcification larger than 1,000 voxels is eliminated. 
Figure 5 shows the detection of true CAC and the elimination of aortic valve and mitral valve calcification. Figure 5(a), 
5(b) belong to one case and 5(e), 5(f) are their corresponding 3D visualizations. 5(a) shows the superior heart region 
with true CAC (yellow arrow) while 5(b) shows the aortic valve (red arrow) and mitral valve (orange arrow) 
calcification. 5(e) shows all the calcification detected in the enlarged heart region while 5(f) shows the final detected 
CAC after elimination of false calcification. Figure 5(c), 5(d) shows the true CAC in different heart regions. 
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Figure 4. Effect of different filter F and threshold I on detected CAC results. CAC voxels are in red and overlaid on the original 
images. 
 

 
3. EXPERIMENT AND RESULTS 

 
The heart segmentation algorithm was evaluated on 3 datasets. The first dataset contains 41 low-dose non-

contrast chest CT scans. The second is the public VIA-ELCAP [15, 16] dataset, which contains 45 low-dose non-contrast 
chest CT scans. The third is a subset of the public LIDC [17] dataset, which contains 335 non-contrast chest CT scans 
with both low-dose and standard-dose scans. Only 314 non-contrast scans from LIDC dataset were used, however, and 
the remaining 21 scans were discarded due to extreme image artifacts or abnormal anatomical structures. Visual 
inspection was used for evaluation. For each segmentation result, a 2D and 3D visualization of the heart region together 
with other organs was computed similarly to figure 1 and figure 3. Inspection showed that: for the first and second 
dataset, all heart segmentation had good result, i.e. the heart region was correctly captured without visible non-heart 
tissues attached to it. For the third dataset, 285 of the 314 cases were good while in the other 29 cases, the segmented 
heart was not well constrained. More details in heart segmentation have been given in the discussion section. 

 
The CAC detection and measurement algorithm was tested on 41 low-dose non-contrast chest CT scans. All 41 

scans were performed at 120kVp, 40mAs. Each scan has its respective standard-dose ECG-gated scan of the same 
patient taken within a short time interval. Both the low-dose and the standard-dose scans have manual markings of CAC. 
The automatically detected CAC was compared with both markings. Manual scores on the standard-dose scans were 
obtained by extracting all voxels with an intensity value greater than 130HU in the marked regions. Manual scores on the 
low-dose scans were obtained by mean filtering the intensity image using a 3x3x3 filter and extracting all voxels with an 
intensity value greater than 130HU in the marked regions. The standard threshold of 130HU was used since the manual 
markings only enclosed the calcification regions. Therefore the standard (lower) threshold would preserve as many true 
CAC voxels as possible without capturing many false positive CAC voxels. 
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Figure 5. Illustration of original scan images and detected CAC (blue), segmented heart (light green) and segmented aorta (red) in a 
sagittal view. (a) and (b) belong to one case. (e) is the 3D visualization of detected calcification in the heart region and (f) is the same 
case after elimination of aortic valve and mitral valve calcification. (c) and (d) belong to a second case. (g) is the corresponding 3D 
visualization. 
 

Two evaluation metrics comparing between automated and manual CAC measurements were considered: the 
first metric was the linear regression correlation coefficient R-squared between the automated Agatston score and the 
manual Agatston score; the second metric was to compare the resulting risk categories of the different methods for each 
case. Risk category corresponds to the Agatston score (AS) in the following way: risk level 1 (low risk):  AS ∈ [0,10]; 
risk level 2 (moderate risk): AS ∈ [11,100]; risk level 3 (moderately high risk): AS ∈ [101,400]; risk level 4 (high risk): 
AS > 400. 
 

Based on CAC measurement results, the automated AS has a mean of 232, a minimum of 0 and a maximum of 
2405. Log transform was performed on all scores before computing the correlation coefficients. The automated AS had a 
correlation of 86% with the manual AS from the standard-dose scans and a correlation of 91% with the manual AS from 
the low-dose scans as shown in figure 6. The automated volume and mass scores were respectively 86% and 84% 
correlated with the standard-dose volume and mass scores and 90% and 80% correlated with the low-dose manual 
volume and mass scores. Compared to risk categories assigned by the standard-dose manual markings, the automated 
algorithm correctly assigned the risks of 24 cases (59%) while 15 cases (37%) were one category off. Compared to risk 
categories assigned by the low-dose manual markings, the automated algorithm correctly assigned the risks of 33 cases 
(80%) while 7 cases (17%) were one category off. Figure 7 shows the CAC distributions using automated method, 
manual method on standard-dose and low-dose images. Table 1 shows the confusion matrices between manual and 
automated methods. 
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Figure 6. Linear regression correlation between automated AS and manual AS. Upper graph shows the correlation between automated 
AS on low-dose images (LD-Auto) and manual AS on standard-dose images (SD-Manual). Lower graph shows the correlation 
between automated AS on low-dose images (LD-Auto) and manual AS on low-dose images (LD-Manual). Red line is the regression 
line fit to the data points. 
 
Table 1. CM1: confusion matrix between low-dose automatic method (LD-Auto) and standard-dose manual method (SD-Manual). 
CM2: confusion matrix between LD-Auto and low-dose manual method (LD-Manual). A1-A4 stands for risk category 1-4 based on 
AS using automatic method. M1-M4 stands for risk category 1-4 based on AS using manual method. 
CM1 (LD-Auto v.s.  
SD-Manual) 

M1 M2 M3 M4 CM2 (LD-Auto v.s.  
LD-Manual) 

M1 M2 M3 M4 

A1 14 4 1 0 A1 18 1 0 0 
A2 1 1 4 1 A2 1 5 1 0 
A3 0 2 1 4 A3 1 1 5 0 
A4 0 0 0 8 A4 0 0 3 5 
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Figure 7. Agatston score (AS) using standard-dose manual markings (SD-Manual red), low-dose manual markings (LD-Manual green) 
and low-dose automatic method (LD-Auto blue). The 4 levels correspond to the 4 risk categories. 

 
4. DISCUSSION 

 
The heart segmentation algorithm was able to produce good results such as in Figure 3 for 371 (92.8%) out of the 400 
test cases. However, inaccurate segmentation occurred when adjacent organs were unable to provide a strong constraint 
for the heart as shown in figure 8. Among the 29 inaccurate heart segmentations, in 19 cases the heart region had 
inaccurate anterior and posterior boundaries (see figure 8(a) and (b)). In 10 cases the heart region had inaccurate inferior 
boundary caused by the inaccurate estimation of diaphragm or pulmonary artery location (see figure 8(c) and 8(d)). All 
41 cases used for CAC evaluation, however, had accurate heart region segmentation. In future work, these issues will be 
addressed by more accurately segmenting adjacent organs. 
 

 
                      a                                            b                                             c                                            d 
Figure 8. Examples of inaccurate heart segmentation from two cases. a and b belong to one case with non-heart tissues attached to 
heart. c and d belong to another case with incorrectly estimated diaphragm location. 
 

The automatic CAC detection and measurement algorithm performed well compared to low-dose manual 
markings. Compared to standard-dose manual markings, however, it had a slightly lower accuracy. The main reason was 
that in low-dose images, it is very hard to distinguish small regions of CAC from noise voxels. This is also shown when 
comparing the low-dose manual markings with standard-dose manual markings. Using standard-dose markings as 
references, the low-dose markings were able to correctly assign the risk category of 23 cases (56%) while 8 cases (20%) 
were one category off. 
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5. CONCLUSION 

 
This paper presents an automatic algorithm to segment the heart region and detect coronary artery calcification (CAC) 
for low-dose non-contrast CT scans. The heart segmentation algorithm performs well in 92.8% of the test cases. The 
detected and measured CAC has a high correlation with manually segmented CAC from both low-dose and 
corresponding standard dose scans. The automatic method is also able to correctly assign risk category for 80% of the 
cases compared to low-dose manual markings. 
 

ACKNOWLEDGEMENT 
 
This study was supported by a grant from the Flight Attendant Medical Research Institute (FAMRI). 
 

REFERENCES 
 

[1] Thompson,  B. H., and Stanford, W., "Update on using coronary calcium screening by computed tomography to 
measure risk for coronary heart disease." Int. J. Cardiovasc. Imaging 21(1), 39-53 (2005). 
[2] Shemesh, J., Henschke, C. I., Farooqi, A., Yip, R., Yankelevitz, D. F., Shaham, D. and Miettinen, O. S., "Frequency 
of coronary artery calcification on low-dose computed tomograph screening for lung cancer," Clinical Imaging 30(3), 
181-185 (2006). 
[3] Shemesh. J., Henschke, C. I., Shaham, D., Yip, R., Farooqi A. O., Cham, M. D., McCauley, D. I., Chen, M., Smith, J. 
P., Libby, D. M., Pasmantier, M. W. and Yankelevitz, D. F.,. "Ordinal scoring of coronary artery calcification on low-
dose CT scans of the chest is predictive of death from cardiovascular disease." Radiology 257(2), 541-548 (2010). 
[4] Reeves, A. P., Biancradi, A. M., Yankelevitz, D. F., Cham, M. D., and Henschke, C. I., "Heart region segmentation 
from low-dose CT scans: an anatomy based approach." SPIE Med. Imaging 8314, 83142A (2012). 
[5] Isgum, I., Staring, M., Rutten, A., Prokop, M., Viergever, M. A., and Van Ginneken. B., "Multi-atlas-based 
segmentation with local decision fusion-application to cardiac and aortic segmentation in CT scans." IEEE Trans. Med. 
Imaging 28(7), 1000-1010 (2009). 
[6] Isgum, I., Van Ginneken, B., and Prokop, M., "A pattern recognition approach to automated coronary calcium 
scoring." Pattern Recognition 3, 746-749 (2004). 
[7] Isgum, I., Van Ginneken, B., Rutten, A. and Prokop, M., "Automated coronary calcification detection and scoring." 
ISPA 127-132 (2005). 
[8] Isgum, I., Prokop, M., Niemeijer, M., Viergever, M. A., and Van Ginneken, B., "Automatic coronary calcium scoring 
in low-dose chest computed tomography." IEEE Trans. Med Imaging 31(12), 2322-2334 (2012). 
[9] Vision and Image Analysis Group, Cornell University, 13 May 2013 <www.via.cornell.edu>. 
[10] Lee, J., Reeves, A. P., Fotin, S. V., Apanasovich, T., and Yankelevitz, D. F., "Human airway measurement from CT 
images." SPIE Medical Imaging. 6915, 691518 (2008). 
[11] Reeves, A. P., Chan, A. B., Yankelevitz, D. F., Henschke, C. I., Kressler, B., and Kostis, W. J., "On measuring the 
change in size of pulmonary nodules." IEEE. Trans. Med. Imaging 25(4), 435-450 (2006). 
[12] Lee, J., and Reeves, A. P., "Segmentation of individual ribs from low-dose chest CT." SPIE Medical Imaging 7624, 
76243J (2010). 
[13] Xie, Y., Padgett, J., Biancardi, A. M., and Reeves, A. P., “Automated aorta segmentation in low-dose chest CT 
images.” IJCARS, (2013). 
[14] Padegett, J., Biancardi, A. M., Henschke, C. I., Yankelevitz, D. F., and Reeves, A. P., “Local noise estimation in 
low-dose chest CT images.” IJCARS, (2013). 
[15] ELCAP Public Lung Image Database. 13 May 2013 <www.via.cornell.edu/dtabases/lungdb.html>. 
[16] Reeves, A. P., Biancardi, A. M., Yankelevitz, D. F., Fotin, S., Keller, B. M., Jiraptnakul, A. and Lee, J., "A Public 
Image Database to Support Research in Computer Aided Diagnosis." 31st Conf. IEEE EMBS, 3715-3718 (2009). 
[17] Armato, S. G., et al, "The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative 
(IDRI): A Completed Reference Database of Lung Nodules on CT Scans," Medical Physics 38 (2), 915-931 (2011). 

Proc. of SPIE Vol. 9035  90350F-9

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 08/09/2016 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx


