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ABSTRACT

Many nodule measurement methods rely on accurate segmentation
of the nodule and may fail with complex nodule morphologies; of-
ten slight variations in segmentation result in large volume differ-
ences. A method, growth analysis from density (GAD), is presented
that measures nodule growth without explicit segmentation through
the application of a Gaussian weighting function to a region around
the nodule, avoiding the drawbacks of segmentation-based methods.
The resulting mean density is used as a surrogate for volume when
computing growth. A zero-change nodule dataset was used to estab-
lish the variability of the method, followed by testing on datasets of
stable, malignant, and complex nodules. There was no significant
difference in percent volume change between the methods (p=0.55),
and while GAD showed similar measurement variability and dis-
criminative performance as a segmentation-based method (GAS), it
was able to successfully measure growth on complex nodules where
GAS failed.

Index Terms— X-ray tomography, pulmonary nodule growth,
lung cancer, density change

1. INTRODUCTION

Improvements in CT scanner technology have enabled the earlier de-
tection of smaller nodules than previously possible. Small nodules
are often difficult to biopsy, and thus, other indicators must be used
to diagnose such nodules. The growth rate of a pulmonary nodule on
CT scans has been shown to be a good indicator of malignancy [1].
Many methods of measuring nodule volume segment the nodule and
count the number of voxels in the segmentation to compute a volume
estimate. Although these methods have steps that address attached
structures, some nodules with substantial and complicated attach-
ments can be difficult for these algorithms to segment, resulting in
a substantial error in their volume estimate. Further, measuring tu-
mor growth based on volume alone may not accurately characterize
the true growth of the nodule – non-solid and part-solid nodules are
prime examples where measuring the density change in addition to
the volume change would be desirable.

Quantifying the uncertainty in volume estimation is critical for
the proper interpretation of the results of an automated measuring
tool. Studies have attempted to address this through the use of scans
obtained in “coffee break” studies where a patient is scanned sev-
eral times, leaving the scanning table between scans. Since these
scans are separated by only a few minutes, no change should have
occurred, and the nodule volume measurements should be identical.
Gietema et al showed a 95% limits of agreement for the difference
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in measured volumes of (-21.2%, 23.8%) [2] in their study using
Siemens LungCare. Wormanns et al assessed the precision of a pre-
release version of Siemens LungCare on 151 nodules from ten sub-
jects [3], and the limits of agreement for repeatability were -20.4%
to 21.9%.

We propose an improved nodule growth measurement method
that takes into account the radiodensity of the nodule and does not
require explicit segmentation. One method has attempted to measure
nodule volume without explicit segmentation [4], relying instead on
the size of a Gaussian kernel determined using a multi-scale ap-
proach; another method relied on the CT density histogram to com-
pute nodule growth rates [5]. In contrast, the method described in
this paper, growth analysis from density (GAD), measures the mean
density of a region containing the nodule after applying a weight-
ing function to reduce the influence of structures far from the nodule
center. GAD was compared to a segmentation-based method, growth
analysis from segmentation (GAS), on the basis of measurement
variability on a zero-change dataset and diagnostic performance on
stable and malignant nodules.

2. MATERIALS AND METHODS

The GAD method is comprised of several stages. Initial preprocess-
ing of the CT scans is performed to select a region of interest around
the nodule and generate an isotropic image. Next, the center and size
of the nodule are estimated from a manually specified seed point us-
ing an iterative optimization approach. In the third step, the regions
surrounding the nodule on each CT scan are registered. In the final
step, a weighting function is applied to the region and the mean den-
sity computed; this mean density is used as a surrogate for volume
in the computations for growth rate. The first three steps rely on pre-
viously published work [6]; the novelty of this method is in the final
step and evaluation method. The method is evaluated for variability
and discrimination performance using several datasets.

2.1. Preproccessing

The input to the algorithm is a pair of CT scans, I1 and I2, containing
the nodule, and seed points located within the nodule on both scans.
Based on this, for each scan, a region of fixed size is extracted from
the original CT scan around each seed point. These regions are re-
sampled into isotropic space, and these images, IR1 and IR2 , along
with the coordinates of the seed points in the resampled space are
provided to the next stage of the algorithm. Resampling the image
into isotropic space enables subvoxel precision for locating and siz-
ing the nodule and makes the process of registration easier, with the
drawback of increasing the image size and computation time. An
additional step of juxtapleural detection is performed to aid in the
next step.
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(a) I1 (b) I2

Fig. 1: Estimate of nodule location and size for a) scan at T1 and
b) scan at T2. Only the central slice of the region is shown. The
location of the nodule is at the center of the circle; the inner circle
indicates the estimated size of the nodule.

2.2. Estimation of nodule center and size

Given the resampled regions and seed points, estimates of the nodule
center, C1 and C2, and size, S1 and S2, on both regions are deter-
mined using an algorithm described by Reeves et al [6], but in con-
trast to their method, the GAD method performs this step on the re-
sampled isotropic image. In their algorithm, two template functions
are defined: a localization template, which is the negative Laplacian
of Gaussian, and a sizing template, which is a Gaussian. An iterative
process is used to determine the nodule location and size with the
highest response. An example of the result of the algorithm on the
first and second scans of a nodule is shown in Figure 1. A guess of
the radius may be passed to the algorithm; this guess is used as an
initial condition and the same process described above is used to de-
termine the nodule size. The computed nodule center and size from
this method are only estimates used to determine the appropriate lo-
cation and kernel size for later steps in the algorithm. The region
from the second scan is reduced in size based on the estimated nod-
ule size; the region of the first scan is not altered in this step.

2.3. Nodule region registration

The IR1 image from Section 2.1 is registered to the second scan,
IR2 , using a three-dimensional rigid body registration algorithm [6].
Although the reference image could be swapped without signifi-
cantly changing the result, IR2 is chosen as the reference here since
further steps compute parameters from the nodule on IR2 . In brief,
the algorithm uses a Gaussian-weighted mean-square-difference
matching metric and conducts a search over all parameters to min-
imize the metric using Powell’s method. The initial translation
parameter is derived from the computed difference in nodule cen-
ters, C2 −C1, and the standard deviation of the Gaussian weighting
function is derived from the estimated size of the nodule on the
second scan (S2). In Figure 2, the nodule on the first scan has been
registered to the nodule on the second scan. The registered image
IRR1 is shown on the left with the difference between the registered
image and the nodule on the second scan on the right (IR2 − IRR1 ).
Note that this step does not alter the image from the second CT scan.

2.4. Growth determination

The inputs to this stage are nodule locations C1 and C2, the size
on the second image S2, the registered image IRR1 , and resampled
image IR2 . To measure nodule growth, instead of computing the
volume by segmenting the nodule, a novel method of computing the
mean density is used. This is driven by the observation that the re-
gion around a nodule consists of lung parenchyma, some part-solid

(a) IRR1 (b) IR2 (c) IR2 − IRR1

Fig. 2: Result of region registration; central slice of a) nodule region
on first scan registered to b) second scan and c) difference image
between the second scan and registered image. Gray indicates no
difference.

components and partial voxels, the solid component of the nodule,
and high-intensity attached structures, such as vessels and the pleural
wall. Although the mean density could be computed directly from
the image, high-intensity structures in the lung not part of the nod-
ule but included in the region will contribute equally to the mean
density of the nodule, which is undesirable for nodule growth mea-
surement. The attached structures are often located at the periphery
of the nodule; to de-emphasize these structures, the densities of the
entire region are weighted by a Gaussian. The equation for a Gaus-
sian used here is:

G(x, y, z, C, σ) =

1

(2π)3/2σ3
exp

(
−(x− Cx)2 − (y − Cy)2 − (z − Cz)

2

2σ2

)
(1)

where C is the coordinate of the center of the nodule, and σ is the
standard deviation of the kernel.

The standard deviation of the Gaussian used to weight the densi-
ties in the region has an effect on the performance of the method – if
the size is too small, the method will not be very sensitive to changes,
while if the size is too large, other structures have a greater influence
on the result. For this method, the Gaussian was truncated at 3σ and
σ was set to 66% of the estimated nodule size. The Gaussian was
centered at C2 on both IR2 and IRR1 . Thus, the mean density was
computed according to the following equation on both images:

M =

∑
x

∑
y

∑
z
I(x, y, z)G(x, y, z, C2, S2)∑

x

∑
y

∑
z
G(x, y, z, C2, S2)

(2)

By doing this, the mean density was computed on as similar regions
as possible. The difference in the cube of the mean density between
the scans was used as a measure of nodule change. Growth rates
were computed in the same way as for the volumetric method, with
the cube of the mean density substituted for the volume.

2.5. Data

Four datasets were used in the evaluation of the method. Unless oth-
erwise specified, cases were selected that had a nodule with solid
consistency, as determined by a radiologist, a successful segmenta-
tion by the GAS method, and a diameter less than 20 mm on the first
scan, according to the GAS method. Two scans through the entire
nodule were available for each case to allow for growth measure-
ment. A summary of the parameters for all datasets is presented in
Table 1; only information not listed in the table is described below.

The first dataset consisted of 20 cases, each with a single nod-
ule, with scans several minutes apart which were imaged during the
preliminary stages of a biopsy; the expected volume change of the
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Table 1: Dataset parameters

Dataset # Nodules
Mean, SD of
Size (mm) Slice Thickness (mm) kVp Current (mA)

Median, Range of
Interval (days)

Zero-change 20 12.69, 3.63 1.25 - 5.0 120, 140 40 - 250 0, 0 - 0

Stable 38 6.91, 3.16 1.0, 1.25 120, 140 80 - 300 393.5, 91 - 1918

Malignant 19 6.68, 3.03 1.0 - 5.0 120, 140 40 - 300 165, 90 - 756

Complex 4 17.61, 3.81 1.0 - 5.0 120, 140 40 - 300 50, 29 - 98

nodules between these scans was zero. Ten cases had two scans of
the same slice thickness (1.25 mm), while ten cases had two scans of
different slice thicknesses – seven of these cases had one scan with a
slice thickness of 1.25 mm and the other 2.5 mm, and in three cases,
one scan was 1.25 mm while the other was 5.0 mm. Scans were
obtained using either a GE LightSpeed QX/i or LightSpeed Ultra
scanner.

The second dataset was comprised of 38 cases with a stable nod-
ule, as confirmed by either biopsy or 2 years of no clinical change,
selected from the Weill Cornell Medical College (WCMC) database.
All of the nodules but one had scans of the same slice thickness.
Scans were acquired with either a GE LightSpeed Ultra, LightSpeed
Pro 16, LightSpeed VCT, HighSpeed CT/i, or Genesis scanner.

The third dataset had 19 cases with a malignant nodule selected
from the WCMC database. Cases were selected to have an interval
of at least 90 days and a volume change of at least 30%, as measured
by the GAS method. These criteria were selected to ensure that the
volume change was greater than the measurement uncertainty mea-
sured by previous studies. Malignancy was confirmed by biopsy or
resection. A GE LightSpeed Ultra, LightSpeed QX/i, HighSpeed
CT/i, or Genesis scanner was used.

In the fourth dataset, malignant nodules with a complex ap-
pearance were selected from the WCMC database where the GAS
method was unsuccessful in segmenting the nodule. These nodules
were solid or part-solid in appearance. Since the nodules were ma-
lignant, the measured growth rate should correspond to malignancy.

2.6. Experiment

The first task was to determine if GAD was measuring the same
quantity as GAS. The percentage change of the estimator of GAD
(M3

2 −M3
1 )/M3

1 was compared to the percentage change in volume
of GAS to determine if the methods were correlated. The methods
were then evaluated on the basis of measurement repeatability and
discrimination performance for malignant nodules. For each nodule
in the zero-change dataset, both the GAS and GAD methods com-
puted the percentage change in their respective estimators. The 95%
limits of agreement (LoA) for the percentage change was used as a
metric of the method variability; smaller LoA imply less variability.

Measurement variability is not the sole consideration of the ef-
fectiveness of a method; it must be able to accurately measure nodule
growth to enable the diagnosis of malignant nodules. To accomplish
this, the growth indices (GI) are measured for a set of stable nodules
using the following equation:

GI = 100
[
(E2/E1)

30.4375/Δt − 1
]

(3)

where E1 and E2 are either the volumes V1 and V2 computed by
GAS on the first and second scans or M3

1 and M3
2 measured by

GAD on the first and second scans, and Δt is the interval in days
between scans. The GI represents the percentage change per month
assuming the growth follows an exponential model. A 95% LoA

Table 2: Limits of agreement (LoA) on the percentage volume
change (PVC) for the subset of zero-change dataset with same slice
thickness scans for both images (10 nodules).

Method Mean PVC (%) SD PVC (%) LoA on PVC

GAD 1.98 13.2 -24.0, 27.9

GAS -3.3 11.2 -25.2, 18.6

Table 3: LoA of growth index (GI) for stable nodules.

Method Mean GI SD GI LoA of GI

GAD -0.07 2.18 -4.35, 4.21

GAS 0.07 2.45 -4.74, 4.87

was established for the GI for each method on the stable nodules,
and nodules with growth greater than the upper limit of the LoA
were considered malignant. The GI for nodules in the malignant
dataset were compared with this threshold value; all of the malignant
nodules should have GI values consistent with significant growth.

3. RESULTS

Linear regression was performed between both methods, using the
percent volume change (PVC) of the GAS method and the percent
change in the cube of the estimator of the GAD method over the all
datasets except for the set of complex nodules. The GAD method
was highly correlated with the GAS method (r2 = 0.97). The
Wilcoxon signed-rank test also showed no significant difference in
the PVC values of the two methods (p = 0.55).

The measurement variability of both methods on the zero-
change dataset was compared. The mean PVC was -3.5% with
a standard deviation (SD) of 18.5%, resulting in a 95% limits of
agreement (LoA) of -39.9% to 32.8% for the GAD method. In
contrast, the GAS method had a mean PVC of -12.2% with a SD of
21.6%, resulting in a LoA of -54.6% to 30.3%. In two cases, the
nodule location and size estimation step failed; for these cases, the
algorithm was also given an estimated radius in addition to the seed
point. The PVC difference between both methods was not statisti-
cally significant (p = 0.26). The 95% LoA was also computed on
just the subset of ten nodules with scans of the same slice thickness
in Table 2.

On the dataset of stable nodules, the GAD method measured
growth rates that were consistent with stability, defined as a growth
index < 5.3 or a doubling time (DT) > 400 days, for all cases. The
GAS method measured growth rates consistent with stability in all
but one case which had a GI of 6.4 (DT=335.6 days). The differences
in GI were not statistically significant (p = 0.75). The 95% LoA of
the GI for both methods are shown in Table 3. In five cases, an
approximate radius had to be specified to the nodule locating and
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Table 4: Summary of growth index (GI) values for both methods on
the datasets of stable and malignant nodules

Dataset Method GI Range Median GI

Stable
GAD -7.3 - 3.7 0.37
GAS -6.2 - 6.4 0.10

Malignant
GAD 4.0 - 36.9 15.2
GAS 3.0 - 45.5 16.7

Fig. 3: Central slice of three complex nodules.

sizing function.

For the set of malignant nodules, the upper limit of the 95% LoA
of the GI from the stable cases was used to establish a threshold
for malignancy. The GAD method identified 94.7% (18/19) cases
as malignant, while the GAS method identified 89.5% (17/19) of
the cases as malignant. The differences in growth index were not
statistically significant (p = 0.77). The range and mean of GI values
are shown in Table 4 for both methods on the datasets of malignant
and stable nodules. Three cases required the specification of a radius
estimate in addition to the seed point.

On the dataset of complex, malignant nodules not able to be seg-
mented by the GAS method, the GAD method measured GI values
of 6.8, 13.9, 25.1, and 31.2 which indicated malignancy for all of the
nodules. Three of the nodules are shown in Figure 3.

4. DISCUSSION

The preliminary results of the GAD method are promising. The PVC
values computed by the GAD method are well correlated with the
GAS method (r2 = 0.97), and the signed-rank test indicated that
there was no significant difference between the two methods. The
new method had a smaller LoA on the entire zero-change dataset
compared to GAS, though a slightly larger LoA on the subset of
zero-change cases on the same slice thickness. These results are
comparable to previously published work in the area which report a
LoA of approximately -20% to 20%.

The performance of the method on the zero-change dataset is not
sufficient to ensure the proper behavior of the method, as the goal of
these methods is to accurately measure pulmonary nodule change.
On the stable nodule dataset, the GAD method had a smaller range
of GI values and a smaller LoA compared to the GAS method. In
addition, the growth rates of the GAD method were all under the
threshold of malignancy (GI < 5.3). These results are similar to the
results on the zero-change dataset. We can use these LoA to assess
what GI represent significant growth.

Using these LoA on the dataset of malignant nodules, the GAD
method identified one additional case as malignant (18/19) compared
to the GAS method (17/19). The same case was misidentified by
both methods, though the GAD GI was higher (4.0) for the case than
the GAS GI (3.0). All four cases of the set of complex malignant
nodules had a GI measured by GAD consistent with malignancy.

These results suggest that GAD is just as sensitive at detecting ma-
lignant nodules but has the added advantage of working on complex
nodules that are problematic for other methods.

Although the GAD method works well on this dataset, there are
a few areas for future improvement. One problem experienced on
this dataset was a failure of the nodule location and sizing algorithm
in 13% of cases (10/77). In all of these cases, providing an estimate
of the radius enabled the correct estimation of the size and loca-
tion. In most of these cases, the radius was underestimated; future
work will aim to make the method more robust. Another concern
is the effect of high-intensity structures on the estimated mean den-
sity. While these structures contribute little to the mean density if
they are located far from the nodule center and are sparse in num-
ber, if they are located near the nodule center, as may be the case in
some juxtavascular nodules, or if they have many attached vessels,
the mean density may be affected, though it is not clear if this is a
desirable effect – a change in the number of vascular attachments is
also relevant to the characterization of nodule growth.

5. CONCLUSION

A method for measuring nodule growth without explicit seg-
mentation (GAD) was described and extensively compared to a
segmentation-based method (GAS) on the basis of measurement
variability on a zero-change dataset, ability to discriminate between
stable and malignant nodules, and performance on a set of complex
malignant nodules. GAD exhibited similar measurement variability
as the GAS method and slightly better discriminative ability than
the GAS method. GAD has the advantage of being more robust than
GAS, successfully measuring a GI consistent with malignancy for
complex nodules not successfully segmented by GAS.
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