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ABSTRACT

Automated nodule classification systems determine a model
based on features extracted from documented databases of
nodules. These databases cover a large size range and have an
unequal distribution of malignant and benign nodules, leading
to a high correlation between malignancy and size. For two
recent studies in the literature, much of the reported perfor-
mance of the system may be derived from size based on anal-
ysis of their size distributions. We performed experiments
to determine the effect of unequal size distribution on a nod-
ule classification system’s performance. Preliminary results
indicate that the performance across the entire dataset (a sen-
sitivity/specificity of 0.85/0.80) does not generalize to a sub-
set of nodules (0.50/0.80), but performance can be improved
by specifically training on that subset (0.60/0.80). Additional
testing with larger datasets needs to be performed, but results
reported in this area are overly optimistic.

Index terms—Medical diagnosis, biomedical image pro-
cessing, pulmonary nodule characterization, size distribution

1. INTRODUCTION

The introduction of high-resolution CT scans has allowed ra-
diologists to detect more small lesions than previously possi-
ble with either chest radiographs or thick-slice CT. The status
of these nodules is often difficult to ascertain, requiring fol-
low up work. Currently, many protocols rely on the assess-
ment of growth rate based on CT scans followed by biopsy
to determine if a nodule is malignant. However, growth rate
assessment requires a second CT scan which prolongs diagno-
sis and exposes the patient to a second, possibly unnecessary
dose of radiation. To address these issues, automated methods
of nodule classification have been developed that differentiate
malignant from benign nodules based on features extracted
from a single CT scan.

Current approaches to nodule classification exhibit three
problems. First, these methods require a large database of
documented cases of both malignant and benign nodules, but,
in practice, it is difficult to obtain a sufficiently large num-
ber of nodules. Second, there is a large size range of nodules
in these databases (over 1000 to 1 by volume), where nod-
ule size is generally expressed as the “average” diameter of
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the lesion in one dimension. Third, for databases constructed
from a given population, malignancy is highly correlated to
size, with benign nodules dominating the small size range
and cancers dominating the large size range. Due to these
three factors, automated methods tend to make extensive use
of size information, which may not be useful when predicting
whether a nodule in an intermediate size range is malignant
and may result in misleading performance.

In this paper, we assess the impact of unequal size distri-
bution of malignant and benign nodules on the performance
of an automated nodule classification system through the use
of datasets with different size ranges and distributions.

2. METHODS

2.1. Analysis of previous work

To better illustrate the problem of using a database with un-
equal nodule size distribution, we consider two datasets re-
cently reported upon in the literature. In the first example[1],
the vast majority of nodules came from a screening study in
which the majority of the nodules were small (less than 7 mm)
and benign. The database of nodules in this study included
413 benign and 76 malignant nodules ranging in size from 3
mm to 31 mm, with the distribution shown in Figure 1. If we
predict malignancy based solely on size by using a criterion
of “all nodules greater than 7 mm are malignant”, we would
achieve a sensitivity and specificity (SS) of (0.80, 0.80). This
performance is very similar to that shown on the ROC curve
for the trained computer method of Suzuki et al[1], although
numerically they reported a SS of (1.00, 0.48). In a dataset
used by Shah et al [2], the nodule sizes are much larger, sug-
gesting that the nodules were taken from a clinical popula-
tion. Their dataset consisted of 33 benign and 48 malignant
nodules with the size distribution in Figure 2. The sizes in
their size distribution histogram represent the maximum di-
ameter of the nodule. On this database, a size criterion of “all
nodules greater than 15 mm are malignant” would achieve a
SS of (0.64, 0.79). In their semi-automated method, features
were extracted from regions of interest demarcated by bound-
aries around the nodule created manually on a single slice by
a radiologist. In this case, the authors achieved a better re-
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Size distribution of Suzuki et al.
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Fig. 1. Histogram of size distribution of dataset used by

Suzuki et al.[1]

sult using their semi-automated method, a SS of (0.90, 0.80)
based on their ROC curve, than size alone. As both papers
used size-dependent features in their algorithms, each system
likely placed a high emphasis on the importance of size dis-
tribution for partitioning the dataset. The use of size infor-
mation is not desirable because it fails to generalize well; as
an example, if the size criterion determined from the dataset
of Shah et al is used on the database of Suzuki et al, a SS of
(0.38, 0.95) would be achieved, and in the reverse case, using
the size criterion determined from the dataset of Suzuki et al
of 10 mm (the closest interval to 7 mm), a SS of (0.21, 0.90)
would be achieved. To date, no studies have analyzed the ef-
fect of size distribution on the performance of a classification
system.

2.2. Dataset

For this study, a total of 48 malignant and 55 benign solid
nodules on whole lung and targeted CT scans were selected
from a screening database. Scans were acquired using ei-
ther GE Medical Systems HiSpeed CT/i, LightSpeed Ultra,
LightSpeed QX/i, or Genesis HiSpeed scanners with either
1.0 mm or 1.25 mm slice thickness. Benign nodules were di-
agnosed by biopsy, histology of resected tissue, or by no clin-
ical change in 2 years. Malignant nodules were diagnosed by
biopsy or histology of resected tissue. Nodule sizes ranged
from 1.9 mm to 32.2 mm, with the size distribution shown in
Figure 3. From the entire dataset, 10 malignant and 10 benign
nodules were selected for a size-controlled dataset. Nodules
were manually selected to achieve a similar size distribution
of the malignant and benign nodules. Only sizes with at least
two malignant and benign nodules were used to ensure that
the distributions within each size bin were as similar as pos-
sible. The nodules ranged in size from 5.13 mm to 8.39 mm,
with the size distribution shown in Figure 4.
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2.3. Nodule classification system

Our automated system for nodule classification consisted of
three stages: nodule segmentation, feature extraction and se-
lection, and classification. In our scheme, nodule segmenta-
tion was performed based on a seed point selected from re-
ports by a radiologist using the algorithm described in [3]. In
brief, this algorithm determines the location and size of the
nodule, and then performs thresholding, morphological filter-
ing, and juxtapleural segmentation to isolate the nodule from
other structures, resulting in a binary segmented image. Us-
ing this image as a mask on the original image data, 2D and
3D features are computed based on geometric and densito-
metric moments. Surface shape information is extracted from
a 3D reconstruction of the binary segmented image. The pro-
cess of computing these features is described further in [4, 5].
Examples of features include compactness, sphericity, x-y ex-
tent ratio, and curvature. Features that were obviously size-
dependent, such as size and volume, were eliminated from
consideration.

Past studies have used a wide variety of classifiers for the
task of nodule classification. These can be divided into two
classes, parametric and non-parametric. Parametric classi-
fiers are characterized by the specification of a model a pri-
ori and include methods such as logistic regression. Non-
parametric classifiers determine a model from the data and
include techniques such as artificial neural networks and k-
nearest-neighbors. This study tested two classifiers, logistic
regression and k-NN, to ascertain which type of algorithm
would be better on this problem and whether both types of
classifiers would be similarly affected by an unequal size dis-
tribution. Logistic regression was chosen because it is often
used in medical classification tasks due to its statistical foun-
dation and availability of methods and tools to interpret its
results. k-NN was selected due to its simplicity and adapt-
ability to irregular feature spaces. Neural networks have also
been used for nodule classification and are likely to have sim-
ilar performance to k-NN for this problem. The k-NN algo-
rithm used Euclidean distance in feature space as a similarity
measure. Features were normalized to have a standard devi-
ation of 1. Forward stepwise feature selection was used to
select the best set of features for the k-NN algorithm while
stepwise feature selection was used for the logistic regression
algorithm.

2.4. Experiment design

In order to determine the impact of the nodule size distribu-
tion of the training dataset on our nodule classification sys-
tem, a series of three experiments were performed. For all
experiments, leave-one-out cross validation was used to test
the algorithms, with feature selection (training) performed on
either the entire dataset or the size-controlled dataset.

In the first experiment, A, the algorithm was trained and
tested using nodules from the entire dataset. This type of anal-
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Fig. 5. ROC curves of the logistic regression classifier for
experiments A (training and testing on the entire dataset) , B
(training on the entire dataset, but testing only on the size-
controlled dataset), and C (training and testing on the size-
controlled dataset). The best performance is on experiment
A, while the worst performance is obtained on experiment B.

ysis is typical of studies reported in the literature. In the sec-
ond experiment, B, the system was trained using the entire
dataset, but results were reported only on the nodules on the
size-controlled dataset. This would reflect the performance
of the system for a nodule within the size range of the size-
controlled dataset. In the last experiment, C, the system was
trained and tested using the size-controlled dataset. This ex-
periment represents the performance of a system tuned specif-
ically for the size range of the size-controlled dataset, with-
out the benefit of having useful size information. If the nod-
ule size distribution is not a factor in the performance of the
classification system, the results of these three experiments
should be similar.

3. RESULTS

Using the full dataset of 48 malignant and 48 benign nod-
ules in experiment A, the classification system achieved good
performance using either of the classifiers, with a sensitiv-
ity and specificity (SS) of 0.85 and 0.80 for the logistic re-
gression classifier, and a SS of 0.75 and 0.80 for the k-NN
classifier. The ROC curve for the logistic regression classi-
fier is indicated by the solid line in Figure 5. In experiment
B, we see that the performance drops significantly, with a SS
of 0.50 and 0.80 for logistic regression, and a correspond-
ing shift to the right (dotted line) of the ROC curve, and a
SS of 0.50 and 0.70 for the k-NN classifier. The nodules of
the size-controlled dataset were included in feature selection
and testing (through leave-one-out) of the model, yet the per-



Table 1. Performance of k-NN and logistic regression classi-
fiers. LR = Logistic Regression

Experiment A | Experiment B | Experiment C
Sens. | Spec. | Sens. [ Spec. | Sens. | Spec.
LR 0.85 | 0.80 | 0.50 | 0.80 | 0.60 | 0.80
k-NN | 0.75 | 0.80 | 0.50 | 0.70 | 0.80 | 0.80

formance is significantly worse for this subset of nodules than
the entire set of nodules. To ascertain whether this drop in per-
formance could be rectified, new models for both classifiers
were trained on just the size-controlled dataset in experiment
C. This improved performance for both classifiers, shifting
the ROC curve to the left (dashed line) slightly for the logis-
tic regression classifier, with a SS of 0.60 and 0.80. The k-NN
classifier achieved slightly better performance in experiment
C than in experiment A, with a SS of 0.80 and 0.80. Both
classifiers showed an improvement in performance compared
to experiment B, suggesting that a different set of features
may be necessary when analyzing nodules in a limited size
range. The sensitivity and specificity for both classification
algorithms are summarized in Table 1.

4. DISCUSSION

Performance results from systems trained on datasets contain-
ing different size distributions will likely produce mislead-
ing results for realistic situations in which the size of the
lesion being considered is known. Analysis of recent pub-
lications show that much of the claimed performance could
be achieved by thresholding with size. The influence of the
nodule size distribution of the training/testing dataset on per-
formance is reinforced by the differences in performance of
our classification system across different experiments. Due
to the natural distribution of nodule sizes, small nodules have
a greater probability of being benign, while large nodules are
more likely to be cancer. Including size information improves
the performance of any system due to correctly classifying
very large or small nodules, but the performance improve-
ment is not constant across a large size range, as is shown
by the decrease in performance in experiment B. This drop in
performance is not limited to one type of classifier; both the
k-NN and logistic regression classifiers had similar reductions
in performance.

One method to address this issue is limiting the training
set to a small size range with a similar distribution of ma-
lignant and benign nodules, as we have done in experiment
C. Among all available features, many are size-dependent,
but under this condition, size no longer provides a benefit to
the classification performance. This enables the feature se-
lection algorithm used by the automated method to choose
features that might be less discriminating than size on the en-
tire dataset, but more discriminating on the smaller subset.
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We tested this hypothesis in experiment C, and found that dif-
ferent features were selected which improved performance on
the size-controlled dataset as compared to experiment B. One
limitation of our study was the small number of cases used in
our dataset. With this small number, the differences between
classification methods were not considered to be significant.

5. CONCLUSION

This preliminary work has identified several issues with using
datasets with malignant and benign nodules of different size
ranges and distributions. While testing was only performed
using our classification system with two different classifica-
tion methods, we expect the effects will be similar on any
automated classification system. If no adjustment is made for
size distribution, misleading, overly optimistic results are re-
ported, with much of the performance derived from very small
benign nodules and very large malignant nodules. Construct-
ing classification systems at a number of size ranges is one
method to improve real performance; however, this requires
much larger datasets with enriched populations. Additional
testing needs to be performed with a larger dataset to deter-
mine if compensating for the nodule size distribution is pos-
sible.
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