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ABSTRACT

There is widespread clinical interest in the study of pulmonary nodules for early diagnosis of lung cancer. These
nodules can be broadly classified into one of three types, solid, nonsolid and part-solid. Solid nodules have been
extensively studied, while little research has focused on the characterization of nonsolid and part-solid nodules.
Nonsolid nodules have an appearance in high-resolution CT consisting of voxels only slightly more dense than
that of the surrounding lung parenchyma. For the solid nodule, robust techniques are available to estimate
growth rate and this is commonly used to distinguish benign from malignant. For the nonsolid types, these
techniques are less well developed. In this research, we propose an automated volumetric segmentation method
for nonsolid nodules that accurately determines a nonsolid nodules growth rate. Our method starts with an
initial noise-filtering stage in the parenchyma region. Each voxel is then classified into one of three tissue types;
lung parenchyma, nonsolid and solid. Removal of vessel attachments to the lesion is achieved with the use of a
filter that focuses on vessel characteristics. Our results indicate that the automated method is more consistent
than the radiologist with a median growth consistency of 1.87 compared to 3.12 for the radiologist on a database
of 25 cases.
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1. INTRODUCTION

In the United States, lung cancer causes more deaths than the next 4 major cancers combined. Early diagnosis
through the study of pulmonary nodules is now a focus of intense medical research. Nodules can occur as one
of three main types: solid, nonsolid and part-solid. Nonsolid pulmonary nodules are regions of translucent
tissue (sometimes referred to as ground-glass opacity, or GGO) which do not have solid components other than
vessels. Compared to the more commonly studied solid nodules, nonsolid nodules have ill-defined borders and
can surround vascular structures. These difficulties make volumetric assessment challenging (see Figure 6 for an
example nonsolid nodule). Growth rate measurement of lung nodules is one of the principle factors in determining
a nodule’s malignancy. Therefore, the objective of this research is the development of an automated volumetric
segmentation method to establish a reliable growth rate calculation for nonsolid nodules. The growth consistency
of nodule measurement can be defined when volume estimates are made from scans at 3 different times. This
metric compares the automated segmentation results with the boundary markings of a radiologist. An automated
method that could reliably perform this task would be very useful in characterizing these types of nodules.

Previous work in the area of nonsolid nodules has mainly focused on segmentation techniques, while little
work has examined accuracy in more important clinical applications, such as growth rate calculation. Growth
rate assessment is particularly important due to the lack of information regarding these potential cancers. K.
Okada, et. al.1 proposed an anisotropic Gaussian fitting method to determine volumetric size of both solid and
nonsolid nodules. This work was primarily focused on determining location and spread of solid nodules, and
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Figure 1. A nonsolid nodule in high resolution CT. The left image is a high-resolution clip indicating the
ROI around the nodule. The image on the right is a montage of images containing the nodule.

only contained 10 nonsolid nodules out of a database of several hundred. Nonsolid component interacting with
vessels are not specifically mentioned in their database (and is the most challenging case). Results were assessed
by visual interpretation by an expert observer. L. Zhang, et. al.2 developed a segmentation algorithm utilizing
a markov-random field (MRF) model for the intensity distribution of the nodule. The results focused exclusively
on the consistency of measurement from the automated segmentations on 25 nodules. There was no comparison
of growth rate computation or segmentation accuracy.

Yoo, et. al.3 proposed a deformable model approach to define the boundary of the nonsolid nodule. This
approach uses a level set method to classify the nodule into one of several regions in order to remove vascular
structures. The level set procedure they used was on 2D slices of the 3D data and would require a higher order
level set function to support a three-dimensional volumetric segmentation. Tachibana, et. al.4 developed a
method for segmentation method for nonsolid nodules using a model based on the watershed method. A set of
23 cases provided by the LIDC were examined and the coincident rate between the radiologist marking and the
automated segmentation result was reported. It was unclear how many of the nodules were nonsolid or solid
nodules within the dataset. No results were reported on accuracy of growth rate computation.

2. METHODS

The automatic nonsolid nodule segmentation method is divided into several stages, as shown below in Figure 2.
These stages include pre-processing, noise reduction, voxel classification and vessel removal.

2.1. Nonsolid Nodule Segmentation

The first step of our segmentation algorithm is to have the operator draw a line through the largest slice of the
nodule. From this information we can determine the maximum extent and central point of the nodule. Once
these have been determined, the region-of-interest (ROI) of the nodule is generated. This ROI is extracted to
three times the size of the given maximum extent measurement to be sure to capture all the nodule region and
the surrounding areas in all image slices. The region is then resampled from an anisotropic image resolution to
an isotropic image space of 0.25 mm3 voxels using super-sampling. An overview of this procedure is given in the
paper by Kostis et. al.5 for the case of solid nodules.
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Figure 2. Flowchart of nonsolid segmentation method consisting of CT image pre-processing and three
major stages.

2.1.1. Noise Filter

Noise occurring in the region of the nonsolid nodule can be particularly problematic if voxels are not classified
correctly. The objective of the noise filter is to smooth the homogeneous regions in the nodule, while retaining
as much edge information as possible. For noise filtering we used a bilateral filter method by Tomasi, et. al.6

which is described in equation 1.

Ismooth(x) = kd
−1(x) ·

∞∑

−∞
f(n) · c(n, x) · s(f(n), f(x)) (1)

The pixel location is denoted by x, whereas the n term denotes a neighbor w.r.t. x. The kd(x) term is the
neighborhood kernel of the function and is used to normalize the results. The closeness function c(n, x) (equation
2) is a weighting term based on the geometric proximity. The similarity function s(f(n), f(x)) (equation 3) is
a weighting term based on intensity. Both the similarity and geometric closeness functions can be defined as
gaussian functions of their euclidean distance.

c(n, x) = e
− 1

2 (
d(n,x)

θd
)2

d(n, x) = ||n − x|| (2)

s(n, x) = e−
1
2 (

a(f(n),f(x))
θr

)2 a(n, x) = ||n − x|| (3)

In Tomasi’s work, the parameters θr, θd were selected to be 30,10 respectively. These values were used in our
filter and provided acceptable results.

2.1.2. Voxel Classifier

We propose a three-level voxel model for the segmentation of nonsolid nodules that incorporate the three tissue
types that characterize the composition of these nodules. This three-class model consists of defining each voxel
in the ROI as parenchyma, nonsolid or solid tissue types. Solid tissue commonly occur at intensity values greater
than -474 HU (hounsfield units). These voxel types represent large vessels and the pleural surface. Nonsolid
voxels are those with attenuation level slightly more than that of lung parenchyma, but significantly less than
solid tissue. Lung parenchyma voxels are less dense and are considered a background class for the purposes of
our segmentation technique.

Determining the appropriate values for the voxels within the ROI is particularly challenging. Some of the
issues include distribution overlap between the parenchymal and nonsolid tissue classes and CT image noise.
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Table 1. Three voxel classification types

Name Intensity Range
Solid Voxel Tissue Greater than about -474 HU

nonsolid Voxel Tissue Typically between -474 HU and -804 HU
Parenchymal Tissue Less than about -804 HU

The proposed solution to these issues is a probabilistic approach to the three-tissue classification model based
on empirically determined intensity levels, τh for solid voxels and τns for nonsolid voxels. The τh parameter was
determined using an adaptive histogram technique outlined in Reeves, et. al.7 The τns level was determined
through examination of several scans and was set to a global value of -780 HU. Once the two intensity values τh

and τns have been determined, a gaussian probability curve is created at each intensity level (equation 4).

P (I(v)) =
1√
2πσ

e−
V 2

2σ2 (4)

where V = τns − I(v) and σ defines the standard deviation of the gaussian curve. The value of σ was chosen
to be 10, based on the observed variance of several scans in the nonsolid voxel intensity range.

Pvoxel−class = 0.5 · P (I(v)) + 0.5 ·
n∑

k=0

N(k) · P (I(v + k)) (5)

Incorporation of neighborhood information during the classification stage can also reduce the impact of image
noise in the parenchyma region classified as nonsolid voxels. In our probability function, equal weight was given
to intensity and neighborhood information, as in Equation 5, where N(k) represents the three-dimensional 6-way
connected neighborhood.

2.1.3. Vessel Removal

A challenge in effective nonsolid nodule segmentation is the removal of vascular connections to the nodule. This
is difficult for two reasons; a) smaller vessels occur with a similar intensity pattern making them often classified
as nonsolid and, b) vessels frequently intersect nonsolid nodules (nearly 80% of the cases in our database).
Removing such vessels while retaining the original shape of the nodule is the objective of the vessel removal
filter.

There has been some work in the area of restricted morphological processing,8 which only erodes/dilates
pixels with specific features, typically volume occupancy within the kernel. Our proposed vessel filter builds
on this work by including structural information of the binary objects. This filter consists of a series of stages,
designed to isolate the nodule from the pleural surface, vessels connected at the periphery of the nodule and
vessels within the nodule.

The first stage of the filter removes all voxels classified as solid tissue. This removes a majority of the pleural
surface, part-solid voxels occurring within the center of vessels and solid component within the nodule. The next
two stages of the algorithm repeat for all nonsolid classified voxels within the ROI. An ellipsoid kernel was chosen
to better reflect the anisotropic nature of the original image data (specifically, the lower axial resolution). The
sizing of the kernels was determined as a function of the nodule size (provided as an input from the investigators
two-click method) in equation 6.

Vs =
Ns

2
+ 1 (6)

For all sizes while Ns > 1. The first stage of the vessel removal algorithm examines the number of nonsolid
voxels found within the specified kernel. A parameter, θr is a restrictive parameter that is a voxel occupancy
sizing critera. If the occupancy percentage within the kernel is greater than that of the θr than the voxel is
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Figure 3. Diagram and flowchart outlining the operation of the vessel removal filter

passed onto the next stage of processing. Based on a cylindrical vessel model, the θr parameter was chosen to
be 0.5, representative of the percentage of volume a cylinder would occupy within the ellipsoid kernel.

The second stage filter examines the structural significance of the ROI. Using three-dimensional moment
analysis on the nonsolid voxel binary image, we can determine the first and second order moments and construct
the ellipsoid of inertia about the ROI. Examination of the calculated eigenvalues can reveal the nature of the
structure of the binary region. We define the three eigenvalues describing the principle axes of the binary
object as λ0, λ1, λ2 in order of decreasing magnitude. Our approach models vessels as being similar to cylinders
structurally and we can examine the ratios in equation 7. In the case of cylindrical vessels, we expect r0 to be
significantly higher valued and r1 to be near 1.0. Removing only voxels with eigenvalue ratios within a tolerance
can retain a larger percentage of the original nodule’s shape.

r0 =
λ0

λ1
r1 =

λ1

λ2
(7)

The final stage of the filter a three-dimensional connected component filter designed to remove vessels and
other structures that have been disconnected from the nodule. The result of the vessel removal filter is shown in
Figure 4.

2.2. Growth Consistency

Growth rate computation is an important clinical parameter in deciding whether an indeterminate nodule is
malignant. One of the principle goals of this research is to determine a confidence metric for measuring growth
rate consistency between a radiologist and our automated method. To accomplish this task, we need to measure
nodule volume at three different time points, so as to calculate two consecutive growth rates. We define a nodules
growth rate using an exponential model and the doubling time (in days) is given below in equation 8.

DT =
ln 2 ∗ ∆t

ln(V2/V1)
(8)
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Figure 4. Image i) on the left is the windowed input CT image. Image ii) is the nonsolid classified voxels.
Image iii) is the same image after the vessel removal filter.

where V1, V2 are the nodule volumes separated by ∆t. Significantly lower DT values are commonly associated
with malignant nodules. Nodule growth per month can also be defined. The growth index (GI) of a nodule is
the percent change in volume per month and is defined below in equation 9. The GI metric is useful in the
comparing growth rates over a short amount of time.

GI = 100 ∗ 2((30.44/DT )−1) (9)

Growth consistency can be determined by examining consecutive growth rates over a set of three distinct time
scans of a single nodule. The first growth rate calculation can be compared with the second and the difference
can be a measurement of consistency. The growth consistency value is defined below:

GC = |GI1 − GI2| (10)

In the ideal case, nodule growth consistency should be 0.0, or no difference between the two growth rates.
Lower growth consistency values increase the confidence in our growth metric, whereas higher values can be a
measurement of error in percent volume per month.

3. DATASET

The CT dataset for the evaluation of our algorithm consisted of 75 scans from the ELCAP project. Cases were
selected randomly with the only requirement being three or more sequential scans existing of the same nonsolid
nodule. Due to the longer time intervals between the scans, several of the scans were of differing resolutions
depending on the year and technology deployed at the screening center. The resolution information is included
in table 2.

Table 2. Number of scans at specific resolutions (25 nodules for 75 total scans)

∼0.6mm X 1.25mm ∼0.6mm X 2.5mm ∼0.18mm X 1.00mm
Number of Cases 50 10 15

Scan Type Whole Lung Whole Lung Targeted Scan

The scans were generated on either a GE Medical Systems Lightspeed Ultra scanner (58 scans) or a GE
Medical Systems QX/i scanner (17 scans). Each case has the same nodule at three different scan dates. A

Proc. of SPIE Vol. 6514  65140Y-6



V 13- : :h. a 2. .. a 2. .
t ...< .

-

I 0— I 0 I
0 13 28 0 13 28 0 13 28

V

25.f 25.f

Figure 5. An example nonsolid nodule segmentation. The upper left image is the largest slice CT image
of the nodule. The binary segmentation result is in the upper right image. The bottom image is the
three-dimensional model of the nodule shown in axial, sagittal and coronal views.

radiologist examined the nodule at each time scan for the case. All slices of the image that contained the nodule
were outlined by the radiologist to form a boundary. These boundary markings were then converted into a
volumetric reading for comparison with our automated results.

The diameter of the nodules ranged from 5.6 mm to 17.5 mm with a median of 9.9 mm. The size information
is included in Figure 7. Most of the nodules in our dataset are of sizes 8-15 mm in diameter at their largest slice.
Nodules smaller than 8 mm are difficult to identify for a radiologist, commonly being confused with noise and
other imaging artifacts.

The scan interval time is important in assessing the accuracy of growth-related calculations. A longer time
interval is less susceptible to noise in size measurements, a common problem with smaller size nodules. Shortened
time intervals may overestimate the growth rate and lead to erroneous clinical conclusions. In order to reduce
this effect, cases with less than 100 day intervals between scans were not considered. The median interval time
between scans was 347 days.

4. RESULTS

The growth consistency experiment design consisted of comparing growth rate calculation between our automated
method and that of an expert radiologist. The GC metric (as defined in equation 2) was used to compare the
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Figure 6. An example nodule that is growing at a rate of 4.5% volume per month during the interval
between the first two scans. The second growth rate calculation between the second and third scans is
3.2 % volume per month. The difference between the two growth calculations gives us our consistency
metric of 1.3.

Figure 7. Dataset size information for set of 25 nonsolid nodules. The size is diameter(mm) and is the
average size over the three time scans. The median size was 10.5 mm and the mean was 11.0 mm.

growth consistency of 25 cases. A total of 75 segmentations were computed using our automated method as well
as 75 3D boundary markings outlined by a radiologist.

The results are reported in table 3. The median GC metric for the automated method is significantly lower
than that of the radiologist. In fact, in 20 out of 25 (80 %) of the cases examined the automated segmentation
technique was found to be more consistent than the radiologist (lower error in growth calculation). Our method
exploits the power of the automated technique to deliver more consistently stable results when computing growth
rates of lung nodules. The difference in growth consistency with respect to the automated method and radiologist
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Table 3. Growth consistency results for automated method and radiologist boundary marking

Method Average GC Median GC Range
Radiologist 3.78 3.12 0.05 - 13.60

Automated Method 2.46 1.87 0.3 - 6.46

had a p-value of 0.002, using the one-sided Wilcox test.

Figure 8. Average growth consistency with respect to nodule size. The automated method is more
consistent than the radiologist by nearly 6 % in the lower size ranges.

The average size of the nodule across all three scans is plotted against the average growth consistency in
figure 8. The smaller the nodule the more susceptible a volumetric measurement is to noise and other imaging
artifacts. This impacts the accuracy in growth consistency and is evident in the nodule size range less than 8 mm.
The radiologist boundary marking is considerably worse and indicates that automated segmentation methods
could aid in the analysis of smaller-size nodules. As the nodule size increases, so does the accuracy in the GC
calculation. For all size ranges, the automated method was more consistent than that of the radiologist.

The automated method is significantly more consistent between a GC of 2-3 percent. Across all the size
ranges, the GC metric only changes by less than 0.5. The radiologist boundary marking method fluctuates from
more than 8 percent difference in smaller size ranges to slightly above 3 percent for the larger size nodules. An
8 percent difference per month is a clearly significant change in volume over a period of one year.

From our observations, there was no clear issue in the lack of consistency from the radiologist markings. One
possible explanation is in human measurement error and the difficulty in locating a consistent boundary for the
nodule. In cases where our automated method was less consistent, errors in the segmentation of the nodule were
the biggest challenge. Incomplete vessel removal from the nodule and excessive noise in the CT image were the
two most significant issues with the segmentation method.

5. CONCLUSIONS

Measurement of lung nodule growth rate continues to be one of the most important features in determining
the malignancy status. Accurate and consistent volumetric growth determination is a powerful tool for the
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radiologist to better characterize the nature of the nodule. We have introduced a new method for segmentation
of nonsolid nodules and examined its performance in measuring growth rates consistently. The results indicate
that our automated method is more consistent at measuring volumetric growth than the radiologist 80 % of the
time.
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