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ABSTRACT  

The segmentation of whole breast serves as the first step towards automated breast lesion detection. It is also necessary 
for automatically assessing the breast density, which is considered to be an important risk factor for breast cancer. In this 
paper we present a fully automated algorithm to segment the whole breast in low-dose chest CT images (LDCT), which 
has been recommended as an annual lung cancer screening test. The automated whole breast segmentation and potential 
breast density readings as well as lesion detection in LDCT will provide useful information for women who have 
received LDCT screening, especially the ones who have not undergone mammographic screening, by providing them 
additional risk indicators for breast cancer with no additional radiation exposure. The two main challenges to be 
addressed are significant range of variations in terms of the shape and location of the breast in LDCT and the separation 
of pectoral muscles from the glandular tissues. The presented algorithm achieves robust whole breast segmentation using 
an anatomy directed rule-based method. The evaluation is performed on 20 LDCT scans by comparing the segmentation 
with ground truth manually annotated by a radiologist on one axial slice and two sagittal slices for each scan. The 
resulting average Dice coefficient is 0.880 with a standard deviation of 0.058, demonstrating that the automated 
segmentation algorithm achieves results consistent with manual annotations of a radiologist. 

Keywords: Whole breast segmentation, breast density, low-dose CT images, fully automated segmentation  

1. INTRODUCTION  
Breast cancer screening with mammogram has been recommended by the United States Preventive Services Task Force 
(USPSTF) and American Cancer Society and been proven to decrease the mortality from breast cancers. Recent studies 
suggest that 3D imaging modalities such as breast tomosynthesis1 and chest CT2 can also be helpful for breast cancer 
screening by demonstrating that breast density readings on 3D modalities are consistent with readings on 2D 
mammogram with greater inter-observer agreement.  

The segmentation of the whole breast serves as the first step towards automated detection of breast lesions and 
automated assessment of breast density, which is considered to be an important risk factor for breast cancer. A fully 
automated algorithm to segment the whole breast in LDCT is presented in this paper. LDCT has been recently 
recommended by USPSTF as an annual lung cancer screening test for older smokers. The automated whole breast 
segmentation and potential breast density readings as well as lesion detection will provide useful information for women 
who have received LDCT screening, especially the ones who have not undergone mammographic screening, by 
providing them additional risk indicators for breast cancer with no additional radiation exposure.  
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Figure 1. Five examples of breast region with ground truth annotated (indicated by yellow contours) by a radiologist. For each case, 
both an axial slice and a sagittal slice of the left breast are shown. It can be seen that there is a large range of individual variations of 
breasts. 

 
Figure 2. CT (a) axial slice and (b) sagittal slice. Solid arrows mark glandular tissues in the breast and dashed arrows mark the 
muscles in the pectoral regions.  

There are two main challenges to the automated segmentation of the whole breast in LDCT. First, the algorithm 
must accommodate a significant range of individual variations in terms of size, shape, location and tissue compositions 
of the breasts as illustrated in Figure 1. LDCT scans are usually taken in the supine positions, while other modalities 
such as mammogram, dedicated breast CT, and breast MRI acquire images either in the prone position or with breast 
compression to constrain the location and shape of the breasts. As a result, there is a much greater range of variations in 
terms of shape and location of the breast in LDCT images than in images of other modalities. Second, glandular tissues 
located in the posterior breast regions may be difficult to be distinguished from the surrounding muscles in the pectoral 
regions as illustrated by arrows in Figure 2, because they have similar CT intensity distributions and can be in contact 
with each other, thereby lacking in well-defined boundaries to exclude the muscles from the breast regions. Moreover, 
the glandular tissues usually have irregular shapes, which complicates the task of separating glandular tissues and 
muscles. 

There has been considerable interest in algorithm development for segmenting the whole breast in other imaging 
modalities, but no published work has been found to focus specifically on LDCT. Methods developed for other imaging 
modalities or standard-dose CT do not translate well to LDCT due to the high levels of noise in the low-dose scans. 
Atlas based approaches3, 4 have been used to segment the whole breast region in CT images. In contrast, our work 
focuses on robust whole breast segmentation using an anatomy directed rule-based method that does not rely on a 
manually generated atlas. The presented algorithm depends on the segmentation of several organs and tissues that is 
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provided by our previous studies, which include skin and fat segmentation7, rib segmentation5, sternum segmentation6 
and lung segmentation9.  

2. ALGORITHM 
The human breast is located outside the thoracic cavity and lies on the underlying muscles, which consist of two major 
types as shown in Figure 3: (1). Anterior muscles MA lying on the thoracic wall such as pectoralis major muscle and 
intercostal muscles; (2). Posterior muscles MP attached to scapula such as latissimus dorsi muscle and teres major 
muscle. The whole breast B is defined in this paper as the region including the complete mammary glands G and 
excluding any muscle tissues (i.e., MA and MP). The segmentation of the whole breast requires the determination of the 
vertical extents, lateral extents, anterior extents and the posterior extents of the breast region. The presented algorithm 
consists of the following four main steps with the flow chart shown in Figure 4: 

1. Identify the anterior and lateral extents using skin segmentation S.  
2. Separate the whole breast B from the posterior muscles MP.  
3. Separate the whole breast B from the anterior muscles MA. 
4. Determine the vertical extents based on the location of the sternal angle and the inferior end of the sternum.  

 
Figure 3. Human tissues and organs in the chest region shown in an axial view. 

2.1 Anterior and lateral extent identification   
The whole breast region B is constrained by the skin surface S as shown in Figure 3. Therefore, the lateral extents and 
anterior extents of B are identified using the skin surface, which is segmented in our previous work7 as illustrated in 
Figure 4 (b). If we let R denote the region of interest, which will be further constrained by the subsequent steps using 
posterior and vertical extents of B and result in the final whole breast segmentation, R is initialized as the interior region 
constrained by the skin S. 

2.2 Separation from the posterior muscles MP 

The posterior extents of the whole breast B consist of two parts: (1). The separation between B and the posterior muscles 
MP as illustrated in Figure 4 (c); (2). The separation between B and the anterior muscles MA as illustrated in Figure 4 (d). 
The separation from MP and MA are determined in this step and the next step respectively, relying on the identification of 
several tissues and organs, which include the thoracic cavity C, the fat tissues F, and the combined tissues MG of muscles 
and mammary glands, in the region of interest R. 

The whole breast B is located outside the thoracic cavity C, which is approximated by constructing a convex hull of 
sternum and ribs (segmented based on previous studies5, 6), as shown in Figure 5 (b).  The region of interest R is then 
updated by excluding C as follows: 

R Å R ∩ ۱ത                                                                                                (1) 
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Figure 4. Flow chart of the algorithm with illustrations associated with each step. 

There are now two major components contained in the updated R: the fat tissues F and the combined tissues MG of 
muscles and mammary glands. Thus, given the fat tissues F segmented using algorithm described in our previous work7, 
the combined tissues MG is obtained as follows: 

MG Å R ∩ ۴ത                                                                                               (2) 

As shown in Figure 5 (b), the combined tissues MG consists of the mammary glands G, the anterior muscles MA and the 
posterior muscles MP, and the separation of B from muscles is equivalent to the distinction of the three components of 
MG.  
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Figure 5. (a) CT axial slice. (b) The identification of the skin S (in blue), thoracic cavity C (in purple), the fat tissues F (in yellow), 
and the combined tissues MG (in cyan). (c) The updated region of interest R after determining the separation between G and MP. 

 
Figure 6. Determination of the separation between mammary glands G (of the left breast) and MP. (a) The skin S (in blue), thoracic 
cavity C (in purple), the fat tissues F (in yellow), and the combined tissues MG (in cyan) of the right breast are shown. (b) The profile 
of the amount of combined tissues MG along the anterior-posterior direction. 

 A gap along medial-lateral direction is usually observed between the mammary glands G and the posterior muscles 
MP as shown in Figure 5 (c), which is then considered as the separation between G and MP. The steps of locating the gap 
between G and MP on each axial slice are summarized as follows and illustrated in Figure 6: 

1. Construct a profile of the number of MG voxels on each medial-lateral level with respect to its location along the 
anterior-posterior direction, as illustrated in Figure 6 (b). 

2. Locate the two medial-lateral levels with greatest amount of MG in the anterior half and posterior half of the thoracic 
cavity C, respectively, as indicated by solid red solid lines in Figure 6. 

3. Determine the medial-lateral level with minimal amount of MG and located between the two levels determined in the 
previous step, as indicated by red dashed line in Figure 6. 

The left and right breasts are separated from MP independently using the same algorithm as described above. The 
division between the left and right breasts is obtained based on the sternum segmentation. For example as shown in 
Figure 6 (a), when considering the left breast, the algorithm is only applied on the image region right to the sternum. The 
region of interest R is then updated by excluding the regions posterior to the determined separations as shown in Figure 
5 (c) by the green shaded region.  

2.3 Separation from the anterior muscles MA 

The region of interest R updated by previous steps contains fat tissues F, mammary glands G, and muscles MA that is 
supposed to be excluded from B as shown in Figure 5 (c). An anatomy directed two-stage region growing method is 
applied on MG (only the part contained in R) to identify muscles MA. The first stage is a location-based preliminary 
growing, which follows the observation that muscles MA generally lie on the surface of the thoracic cavity C and are 
separated from the outer mammary glands G by a layer of fat tissues F as shown in Figure 7 (b). The second stage is a 
rule-based further growing, which enforces a sets of rules to identify muscles that are under-segmented by the first stage. 
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Figure 7. An anatomy directed two-stage region growing method. (a) Muscles MA (in cyan) identified by the first stage. Arrows point 
to the muscles that are under-segmented. (b) Results of the second stage growing. The thoracic cavity C (in purple), the mammary 
glands G (in red), the muscles MA (in cyan), and updated region of interest R (in green and red) are shown.  

 Stage 1: Location-based preliminary growing of muscles MA 

 It is usually observed that the muscles MA lie on the surface of the thoracic cavity C and are separated from the 
outer mammary glands G by a layer of fat tissues F as shown in Figure 7 (b). As a result, the nearest layer of fat to C and 
the distance between MG voxels and C are used to identify MA as follows: 

1. Initialize muscles MA by including voxels located on the boundary of the thoracic cavity C.  
2. For each MA voxel v, compute its 3D Euclidean distance λ(v) to the nearest fat F voxel. 
3. For each MA voxel v, include all MG voxels within the distance λ(v) into MA.  

An example of muscles MA identified after the first stage is shown by the cyan regions in Figure 7 (a). The region of 
interest R and the combined tissues MG of interest are then updated as follows: 

R Å R ∩ ࡭ࡹതതതത                                                                                               (3) 

MG Å R ∩ MG                                                                                               (4) 

 Stage 2: Rule-based further growing of muscles MA 

 The underlying assumption of the first stage growing is that there are no fat tissues separating muscles MA and 
thoracic cavity C, however, it does not apply to all circumstances, and therefore some muscle voxels may be under-
segmented as indicated by arrows in Figure 7 (a).  MA is further grown by enforcing geometry constraint and 
connectivity constraint sequentially on MG based on the observation that MG voxels located near the lung and MA with 
high degree of connectivity to MA are very likely to be muscles. The detailed steps are summarized as follows: 

1. On each axial slice, apply 2D connected component labelling on MG voxels. 
2. Identify all candidate muscle components, which are defined as MG components with lateral distance less than τ mm 

to the nearest MA voxels, i.e., τ is a threshold for the lateral thickness of muscles on an axial slice . 
3. For each candidate muscle component c, if it is close enough to the lung (segmented in previous study9) with high 

degree of connectivity to MA voxels, then c is included into MA. Specifically, let λ(c) denote the average 2D 
Euclidean distance from voxels of c to the lung, and let d(c) denote the degree of connectivity of c to MA voxels, 
which is defined as the anterior-posterior span of voxels connected to MA voxels and located in the anterior region of 
c.  If the component c satisfies any of the following three criteria, then it is included into MA: 

i. d(c) > σ1  and λ (c) < τ1 
ii. d(c) > σ2  and λ (c) < τ2  

iii. d(c) > σ3 and  λ (c) < τ3 
Where 0 < σ1 < σ2 < σ3 and 0 < τ1 < τ2 < τ3, which reflects the trade-off between the degree connectivity and distance 
to MA voxels. 

The degree of connectivity d(c) for a muscle component c is defined using only the anterior region (located within 1 
mm to the anterior end of c) of c. This is because we observe that both mammary glands and muscles component can be 
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connected to the MA voxels identified in the first stage, as illustrated in Figure 8 (a) by dashed arrows. However, only the 
anterior region of a muscle component is usually connected to MA, as indicated by the dashed arrow on the left in Figure 
8 (a), which is therefore used as the basis to classify candidate muscle components into mammary glands and muscles. 

 
Figure 8. Both mammary glands and muscles component can be connected to the MA voxels identified in the first stage, as illustrated 
by dashed arrows. However, only the anterior region of a muscle component is usually connected to MA, as indicated by the dashed 
arrow on the left. (a) The tissue compositions determined in the first stage. Updated MG and MA are shown in red and cyan 
respectively. Note that on the left side of the image, some muscles are under-segmented. (b) The real tissue compositions (mammary 
gland G (in red), muscles MA (in cyan) and fat F (in yellow)) shown on an axial slice.  

An example of muscles MA identified after the second stage is shown by the cyan regions in Figure 7 (b). The 
region of interest R and the segmented mammary glands G are then determined as follows: 

R Å R ∩ ࡭ࡹതതതത                                                                                               (5) 

G Å R ∩ MG                                                                                               (6) 

 

2.4 Vertical extent determination 

The superior and inferior extents of the breast region B are observed to approximately coincide with the sternal angel A 
and the inferior end E of the sternum, which are provided by the sternum segmentation5, as illustrated in Figure 4 (e). 
Therefore, the vertical span of B is first initialized as the vertical span between A and E, and then is refined to the actual 
glandular tissue extent as follows: 

1. On each axial slice located beyond the initial vertical span, perform 2D connected component labelling on the 
segmented mammary glands G voxels. 

2. To determine the superior extent, starting at the axial level of the sternal angle A, move in the cranial direction and 
locate the first axial slice with no significant G components. 

3. To determine the inferior extent, starting at the axial level of the caudal end E of the sternum, move in the caudal 
direction and locate the first axial slice with no significant G components. 

The whole breast segmentation B is then determined by excluding axial levels beyond the determined vertical span 
from the region of interest R. 

3. EXPERIMENTS 
The presented algorithm was evaluated on 20 LDCT images (120kV-140kV, 40mA-80mA) from the LIDC public 
dataset8 with slice thickness less than 1.25 mm. The quantitative evaluation is used to validate the presented algorithm. 
For each CT scan, the ground truth for the whole breast region is manually annotated by a radiologist on one axial slice 
and two sagittal slices. The axial slice is selected at the axial level intersecting nipples, and the two sagittal slices are 
selected at the median level of left and right breast respectively as illustrated by Figure 9. Figure 1 also contains 
examples that are manually annotated and used as ground truth. Dice coefficient (DC), which is defined as twice the 
intersection area divided by the sum of the individual areas, is used to measure the agreement between the automated 
segmentation and the ground truth. 
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Figure 9. Example of ground truth (indicated by yellow contours) annotated by a radiologist on (a) one axial slice and (b, c) two 
sagittal slices for one CT scan. 

4. RESULTS 
Examples of segmentation outcomes are shown in Figure 10 (a-c) as 3D visualizations and (d-f) their respective 2D axial 
visualizations. For the 3D visualizations, the sternum and the segmented mammary glands G are also shown as 
reference.  For the 2D axial visualizations, the thoracic cavity C, the segmented mammary glands G and anterior muscles 
MA are also shown as reference.  

The quantitative evaluation results for 20 scans (20 axial annotations and 40 sagittal annotations) are summarized 
in Table 1. An overall mean Dice coefficient of 0.880 with standard deviation of 0.058 is achieved. 

Table 1. Dice coefficients (DC) for axial annotations, sagittal annotations and overall annotations. 

 Mean DC Max DC Min DC Standard deviation 
Axial (20 slices) 0.930 0.962 0.867 0.024 
Sagittal (40 slices) 0.830 0.880 0.758 0.033 
Overall (60 slices) 0.880 0.962 0.758 0.058 
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Figure 10. (a-c) 3D coronal visualizations of the whole breast segmentation (in light green) from three different CT scans. The 
segmentation of sternum (in grey) and the mammary glands (in dark green) are also shown as reference. (d-f) 2D axial visualization of 
the whole breast segmentation (in blue) for respective scans in the first row. The mammary glands G (in red), the muscles MA (in 
yellow), and the thoracic cavity C (in purple) are also shown as reference.   

5. DISCUSSION 
The evaluation results report a mean DC on axial slices of 0.930, which indicates a satisfactory determination of lateral, 
anterior, and posterior extents. The mean DC of 0.830 on sagittal slices is not as encouraging as that on axial slices, 
thereby suggesting that the automatically determined vertical extents generally differ from the manually annotated 
extents. The challenge of determining vertical extents stems from the lack of well-defined superior and inferior breast 
boundaries. Examples of segmentation results are shown in Figure 11 and arranged from left to right in the order of 
decreasing DC. The original CT images and the comparison between the segmentation and the manual annotations are 
shown in the axial view and sagittal view respectively. Correct segmentation is in red, over-segmentation is in green and 
under-segmentation is in purple. The under-segmentation of breast regions on sagittal slices is common as indicated by 
the purple regions in Figure 11 (h, j, l) and thus results in low DC. However, although cases as shown in Figure 11 (j, l) 
have relatively low DC, the complete mammary glands are successfully segmented and most of the muscles are 
excluded, in which case the under-segmentation will not influence the potential breast lesion analysis in the future. 

The vertical span of the whole breast region is determined based on the sternal angle and the inferior end of the 
sternum, rather than the actual vertical extents of mammary glands G segmented in section 2.3. This is because G tends 
to be over-segmented at the axial levels superior to the sternal angle, i.e., the muscles MA may not be completely 
identified in the third step of the algorithm, due to two main reasons as illustrated in Figure 12.  First, the level of image 
noise is usually higher at the superior axial levels due to the existence of shoulder bones, thereby making it more 
challenging for the automated algorithm to perform well. Second, the shape, geometry and dimensions of the muscles at 
the axial levels superior to the sternal angle differ significantly from those at axial levels of the breast region as indicated 
by arrows in Figure 12. As a result, the assumptions and constrains suitable for identifying muscles in the breast regions 
do not translate well in the region superior to the breast region. On the other hand, we observed that the sternum provides 
decent references for determining the vertical span of the breast region, and further refinement based on the actual 
glandular tissues location is good enough to result in a satisfactory outcome.  
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Figure 11. Examples of segmentation are arranged from left to right in the order of decreasing DC. (a, c, e, g, i, k) are the original CT 
slices, and (b, d, f, h, j, l) are the segmentation compared to the ground truth for respective cases. Correct segmentation is in red, over-
segmentation is in green and under-segmentation is in purple. The DC for (a-f) axial slices are 0.962, 0.951, 0.867 respectively, and 
for (g-l) sagittal slices is 0.880, 0.805 and 0.758 respectively. 

Figure 12. Axial CT slices at (a) the median level of the breast and at (b) the level superior to the sternal angle. The arrows indicate 
significant variations in terms of the shape and dimensions of muscles at these two axial levels.  

In future work we plan to quantitatively validate the segmentation of the glandular tissue and to analyze the 
geometry of the glandular tissue to identify breast abnormalities. In addition, we plan to quantitatively evaluate the 
utility of the ratio of the volume of glandular tissues to that of the whole breast for the fully automated measurement of 
breast density. 

6. CONCLUSION
The segmentation of whole breast is necessary for automatically assessing the breast density and serves as the first step 
towards automated breast lesions detection. A fully automated algorithm to segment the whole breast in LDCT has been 
presented in this paper. Segmentation of 20 LDCT scans was evaluated by comparing to manually annotated ground 
truth. The resulting average Dice coefficient is 0.880 with a standard deviation of 0.058, demonstrating that the 
automated segmentation algorithm achieves results consistent with manual annotations of a radiologist. 
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