
http://dx.doi.org/10.1117/12.844012

Copyright 2010 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
Variation Compensation and Analysis on Diaphragm Curvature Analysis for Emphysema Quantification on Whole Lung CT Scans

Brad M. Kellera*, Anthony P. Reevesb, R. Graham Barrc, David F. Yankelevitzd, and Claudia I. Henschked

aDepartment of Biomedical Engineering, Cornell University, Ithaca, NY, USA;
bSchool of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA;
cDepartment of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA;
dDepartment of Radiology, Weill Medical College of Cornell University, New York, NY, USA

\textbf{ABSTRACT}

CT scans allow for the quantitative evaluation of the anatomical basis of emphysema. Recently, a non-density based geometric measurement of lung diaphragm curvature has been proposed as a method for the quantification of emphysema from CT. This work analyzes variability of diaphragm curvature and evaluates the effectiveness of a compensation methodology for the reduction of this variability as compared to the emphysema index. Using a dataset of 43 scan-pairs with less than a 100 day time-interval between scans, we find that the diaphragm curvature had a trend towards lower overall variability over emphysema index (95\% CI: -9.7 to +14.7 vs. -15.8 to +12.0), and that the variation of both measures was reduced after compensation. We conclude that the variation of the new measure can be considered comparable to the established measure and the compensation can reduce the apparent variation of quantitative measures successfully.

\textbf{Keywords:} X-ray Computed Tomography, Computer-aided Diagnosis, Emphysema, Diaphragm, Curvature, Variation analysis

\section{1. INTRODUCTION}

Since the introduction of high-resolution, multi-row detector CT, radiologists have been able to view the anatomical basis of emphysema from CT scans. Emphysema is defined clinically as the destruction and breakdown of the alveolar air sacs in the lung. This creates what are known as emphysematous regions, or low-attenuation areas, of the lung parenchyma. Visually, emphysematous regions are described in CT as being regions of lung parenchyma that are of a significantly low density. This allows for a qualitative scoring of the extent to which an individual has emphysema present in the lungs. Computer-based scoring systems have been developed that extend this concept to allow for quantitative evaluation of emphysema from CT scans, with the majority of methods focusing on the use of density information as the primary index, either through relative area or distribution of regions of low-attenuation. The emphysema index, developed in 1988 by Müller, is the most well known of all these measures.

One of the most useful purposes for scoring emphysema from CT is to measure and track the progression of disease. For a measure to be useful for the measurement of disease state change, it is beneficial to use measures which are inherently less variable. In this way, it becomes possible to equate changes in measurement with actual changes in disease state. However, there has been concern that the variation of emphysema index, and densinometric measurement of emphysema in general, over time would limit the usefulness in measuring disease progression. Measure variation has been attributed to multiple sources, including varying dose levels between scans, variable inspiration levels, and altered scan acquisition settings. Recently, it has been suggested that diaphragm curvature be used as a non-densinometric approach for evaluating the severity of emphysema present in a given patient, as increasing emphysema severity has been associated with a flattening of the diaphragm. This effect is illustrated in figure 1. A non-density based approach for emphysema quantification would also have the benefit of avoiding some of the limitations noted above.
Previous work has shown that the diaphragm curvature estimates are as useful as emphysema index in quantifying COPD from CT scan. While some work has been done on the analysis of emphysema index variation, minimal work has been done in investigating diaphragm curvature variation. Therefore, the overall objective of this work was to compare the variation of emphysema index from low-dose, whole-lung CT scans on a number of short time-interval scan pairs with equivalent scan acquisition parameters (slice thickness and dose), in which true emphysema change would be expected to be negligible, and evaluate the effect of correction factors on both measures simultaneously.

2. METHODS AND MATERIALS

2.1 Generation of Emphysema Indicies

In order to generate the quantitative measures evaluated in this work, as well as the differences between the same indices in two subsequent scans, we first segment out the lung region from each scan-pair of whole-lung, low-dose CT scans using a standard algorithm. To minimize bias due to the low density volume in the major airways on density-based metrics, we further segment out the major airway structures (trachea, main bronchi, etc.) using a segmentation method as described by Lee et. al. Two indices of emphysema were then computed for each scan within a pair, namely the emphysema index and the diaphragm extent ratio.

The emphysema index is the base measure of emphysema severity from whole lung CT scans. Developed in 1988 by Müller et. al., the emphysema index has become the most reported score in literature related to automated quantification of emphysema severity. It also commonly referred to in the literature as low-attenuation area percentage (LA%) or relative area (RA). As emphysema progresses, there is an increased amount of low-attenuation volume within the lung regions as a result of a relative increase in terminal airspace as compared to total lung volume. Given L as a set of pixels belonging to the lung region contained within a CT image, the emphysema index (EI) can then be calculated as

\[EI = \frac{|\{p_i : p_i \in L, I(p_i) < T\}|}{|L|} \]
where $I(p_i)$ is the density value of the pixel p_i in the CT image being analyzed and T is the density level below which a pixel is defined as being emphysematous. In this study, T is set to -910 H.U. as this level is believed to encompass all regions in the lung parenchyma with some level of emphysema present. An example of emphysematous regions masked out in CT images for two levels of emphysema severity is provided in figure 2.

In order to compute the diaphragm curvature measure, we first segment out the diaphragm surface from the whole lung mask using an automated segmentation algorithm based on surface-normals as has been previously described. Example segmentations of the diaphragm as acquired by this method are given in figure 3. To estimate diaphragm curvature, we computed both the height of the diaphragm and width of the diaphragm normalized by height as both have been shown to be useful in quantifying hyperinflation associated with emphysema. The height of the diaphragm is computed by calculating the z-extent of the segmented diaphragm surface. The coronal diaphragm extent ratio was then computed by calculating the maximal width of a projection of the diaphragm mask on the coronal plane and normalizing by the diaphragm height. As the computation is done on each of the two lung-diaphragm pairs in the image, a composite score is generated for the particular scan being analyzed by averaging the left and right lung scores into single, overall score. From this, the coronal diaphragm extent ratio can be computed by calculating

$$DER_C = \frac{CE_{left} + CE_{right}}{2}$$

where DERc is the diaphragm extent ratio in the coronal (x-axis) plane, CELeft and CERight are the coronal extents of the left and right diaphragms, respectively, and DHLeft and DHRight are the height of the left diaphragm and right diaphragm, respectively.

2.2 Evaluation of Emphysema Metric Variation

To quantify the variation of diaphragm curvature estimates as compared to emphysema index, 43 scan-pairs of whole-lung, low-dose CT scans comprised of 73 individual scans were analyzed using in-house developed software algorithms for lung segmentation and analysis. For each scan, the lung volume and height, as well as the emphysema index and diaphragm extent ratio in the coronal plane were computed. Then for each scan-pair the
absolute differences of the emphysema index and diaphragm extent ratio are computed, as well as the percent difference in volume and lung height. In order to account for the fact that the emphysema index and diaphragm score are on different scales, a linear transformation is performed on the scores to scale the two metrics into a standard 0-100 range. For each of the two normalized metrics, the mean and standard deviation of the differences as well as the 95% confidence interval were computed and reported. A two-sample F-test is also performed to compare the two measures' variances and determine if there is any statistically significant difference between the two measures in terms of measure variation.

2.3 Variation Compensation of Emphysema Metrics

Compensation for change in emphysema scoring methods due to outside sources of variation is also considered in this work using a linear regression model for both the emphysema index and diaphragm extent ratios. As emphysema index is known to be effected by inspiration volume changes, this work seeks to evaluate the effectiveness of compensation for the reduction of the variation. Change in inspiration volume has been found to best correlated with emphysema index change, and thus is used as the compensation metric in this work. Empirically, we have also found inspiration volume change and change in lung height to correlate with the diaphragm extent ratio change, though to a more limited degree as compared to volume and emphysema index change. Therefore, both variation in inspiration volume and in lung height are used to correct for variation found. It should be noted that lung height differences was found to correlate extremely poorly with emphysema index, and thus is omitted from emphysema index compensation so as to not increase the variation by chance. To show the effectiveness of compensation, the mean and standard deviation of the differences as well as the 95% confidence interval are computed and reported for the two measures. Again, a two-sample F-test is also performed to compare two measures variances. Furthermore, two-sample F-test’s are computed between the compensated and non-compensated measure.

3. DATA

All scans used in this study were acquired at the Weill Medical College of Cornell University using a whole lung, low dose protocol at 120 kVp. Through retrospective selection, 43 short-time-interval CT scan-pairs across 28
cases were analyzed in this work. All scans were acquired either on a GE Lightspeed Ultra, VCT, or Pro 16, with a 1.25 mm slice thickness. In order to analyze variation of the measures without variation due to change in disease state being, the scan-pairs were selected to have a mean time interval of less than 100 days (mean: 73 days, standard deviation: 24 days, max: 98 days, min: 21 days), as this would ensure relative stability of disease state.

4. RESULTS

The mean, standard deviation (SD) and 95% Confidence Interval for the emphysema index and the diaphragm extent ratio is given in Table 1. In this work, we found that there is a trend towards smaller variation of the diaphragm extent ratio score than emphysema index prior to compensation, though this was not found to be statistically significant (p=0.24). Table 2 shows the same statistics for the two measures computed after compensation. After compensation, the perceived trend is eliminated as the two measures are brought into better agreement and there was no statistical difference between the measures (p=0.44). What is interesting to note is the trend to decreasing variability for the compensated measures versus the non-compensated measures, although this was not found to be significant (p=0.12).

5. DISCUSSION

In this work we have found that, although not statistically significant, a trend exists for decrease variation in the diaphragm curvature measure as compared to the emphysema index. Using measures that are more repeatable is especially important in evaluating the progression of disease, so work has gone into the measurement of the variability of measures. As diaphragm curvature measurement has been proposed as a new quantitative metric for measuring emphysema progression, it is necessary to further evaluate the variability of the proposed measure.

As has been noted in other work and again seen in this work, the emphysema index can be see to be highly variable between two subsequent scans because of changes in inspiration volume, as well as being susceptible to changes in things such scan dose and reconstruction algorithm. However, this work shows that by compensating for known sources of variation, better estimation of true disease change can be obtained by requiring less of a difference in quantitative score to be seen in order to detect progression. This was found to be true for both the diaphragm curvature measure and particularly the emphysema index. This indicates that compensation is a useful technique and should be used to eliminate possible quantitative biases in emphysema measurements.

Linear regression was shown to be useful as a model of measure variability to in order to compensate for inspiration level changes, primarily with regards to the emphysema index. Although a simpler model, it was found to be useful in reducing the overall variability of emphysema index without the risk of over-fitting that more complex models would have on smaller datasets. This would be advantageous in larger studies that attempt to correlate emphysema index with other changes in image data.

An interesting point is that while compensation allowed for a slight reduction in variability of diaphragm curvature, it was not as large a reduction as was seen with the emphysema index. This is because lung curvature

<table>
<thead>
<tr>
<th>Mean of Differences</th>
<th>SD of Differences</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>EI</td>
<td>-1.98</td>
<td>7.55</td>
</tr>
<tr>
<td>DE</td>
<td>-0.11</td>
<td>6.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean of Differences</th>
<th>SD of Differences</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>EI</td>
<td>0.26</td>
<td>6.42</td>
</tr>
<tr>
<td>DE</td>
<td>0.11</td>
<td>6.28</td>
</tr>
</tbody>
</table>
has been found to be relatively stable despite changes in lung volume,21 though some variability can still be attributed to lung volume change. Although it was not the focus of this paper, it was noted that the highest variability in diaphragm curvature tended to come from a limited number of cases where the lung was found to have an uncommon morphology, such as can be caused by a pleural effusion or partial lung resection. This is due to a limitation in the diaphragm segmentation algorithm which assumes as standard lung morphometry and orientation. Thus if the diaphragm surface is not effectively oriented downward, or the patient is angled in some manner, the algorithm is more likely to fail. As such, further improvements to the segmentation algorithm should be sought in order to account for these more difficult cases.

6. CONCLUSION

This work offered a detailed analysis of the variation of a new metric for emphysema quantification as compared to a standard measure. It was shown that there is a trend towards decreased variability in diaphragm curvature estimation versus emphysema index. Furthermore, a compensation methodology was presented that allowed for some correction of the variation within these measures. This allows for more accurate analysis of these measures in long term longitudinal studies of emphysema progression, where indication of true change in these measures is the most important indicator of disease state change.

ACKNOWLEDGMENTS

This work was supported in part by NIH grant HL075476. Dr. Yankelevitz and Dr. Reeves are co-inventors on patents and other pending patents relating to evaluation of diseases of the chest including measurement of nodules. Some of these, which are owned by Cornell Research Foundation (CRF) are non-exclusively licensed to General Electric and they receive royalties from CRF pursuant to Cornell policy, which in turn is consistent with the Bayh-Dole Act. Dr. Henschke is a co-inventor on patents and other pending patents relating to evaluation of diseases of the chest including measurement of nodules, some of which are owned by Cornell Research Foundation (CRF) are non-exclusively licensed to General Electric, but has divested herself of all financial or other interests.

REFERENCES

