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ABSTRACT

Di�erences in the size distribution of malignant and benign pulmonary nodules in databases used for training
and testing characterization systems have a signi�cant impact on the measured performance. The magnitude
of this e�ect and methods to provide more relevant performance results are explored in this paper. Two-
and three-dimensional features, both including and excluding size, and two classi�ers, logistic regression and
distance-weighted nearest-neighbors (dwNN), were evaluated on a database of 178 pulmonary nodules. For the
full database, the area under the ROC curve (AUC) of the logistic regression classi�er for 2D features with
and without size was 0.721 and 0.614 respectively, and for 3D features with and without size, 0.773 and 0.737
respectively. In comparison, the performance using a simple size-threshold classi�er was 0.675. In the second
part of the study, the performance was measured on a subset of 46 nodules from the entire subset selected to have
a similar size-distribution of malignant and benign nodules. For this subset, performance of the size-threshold
was 0.504. For logistic regression, the performance for 2D, with and without size, were 0.578 and 0.478, and
for 3D, with and without size, 0.671 and 0.767. Over all the databases, logistic regression exhibited better
performance using 3D features than 2D features. This study suggests that in systems for nodule classi�cation,
size is responsible for a large part of the reported performance. To address this, system performance should be
reported with respect to the performance of a size-threshold classi�er.
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1. INTRODUCTION

Lung cancer often presents as a pulmonary nodule in its earliest manifestation. Early detection and diagnosis
of such nodules may lead to improved patient care. While advances in CT scanner technology have enabled
early detection of these nodules, diagnosis typically requires waiting for several months to obtain a follow-
up scan, possibly delaying treatment and exposing the patient to additional radiation. Automated nodule
characterization systems promise to enable diagnosis of suspicious lesions from a single CT scan. These systems
take as input a set of features, train a classi�er to achieve optimal performance using some metric on a subset of
data known as the training set, and report generalized performance on a separate testing set. The expectation
is that the classi�cation of an unknown case will exhibit similar performance as the performance on the testing
set. Many studies have experimented with the use of di�erent kinds of features and classi�ers; one method
by Suzuki et al1 utilized pixel values in a local window on a region of interest in a CT image in conjunction
with a massively trained arti�cial neural network to distinguish between malignant and benign nodules. The
researchers reported a sensitivity of 1.00 and a speci�city of 0.48, with an area under the ROC curve (AUC)
of 0.88. A second study by Aoyama et al2 also used neural networks, but utilized 41 features extracted from
regions of interest containing a nodule. The e�ective diameter of the nodule was included among the features;
the authors reported an AUC of 0.85 using data from multiple slices. Aside from neural networks, other popular
classi�ers include logistic regression and linear discriminant analysis (LDA). Shah et al3 extracted several two-
dimensional features, including size-based features, and tested several classi�ers, including a LDA classi�er, a
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logistic regression classi�er, a decision tree, and quadratic discriminant analysis. Using LDA, they achieved an
area under the ROC curve of 0.92. The authors did another study4 using a di�erent dataset and a di�erent set
of features. Some of the features were based on the entire volumetric region of interest as opposed to a single
slice, as in their previous paper. The authors again achieved an area under the ROC curve of 0.92 using a logistic
regression classi�er.

While many studies have achieved good performance of an AUC of 0.85 or above, several issues which may
a�ect performance have yet to be properly addressed. A primary concern is the impact of the distribution of
the sizes of malignant and benign nodules. Nearly all datasets used in the training and testing of characteriza-
tion systems to date exhibit bias in the size distribution of malignant and benign nodules. This a priori size
information is a powerful feature,5,6 but in the evaluation of an automated characterization system, the relevant
performance is not the absolute performance, but whether, and by how much, performance is improved over the
use of this a priori size information.

There has been an increasing trend towards the use of 3D features over 2D features, but few studies have
directly compared them on the same dataset. Finally, studies tend to use either parametric classi�ers, such
as logistic regression, or non-parametric classi�ers, such as neural networks; few studies have compared the
performance of both types of classi�ers on the same dataset. This study assesses the e�ect of unbalanced dataset
size distribution on the performance of automated systems for the di�erentiation between malignant and benign
nodules. Both 2D and 3D feature sets are evaluated with respect to two types of classi�ers, a parametric (logistic
regression) and non-parametric (distance-weighted nearest neighbors) classi�er.

2. METHODS AND MATERIALS

The pulmonary nodule characterization system used in this study was based on the system reported by Jira-
patnakul et al.7 The system will be brie�y described, followed by an explanation of the data and experiment
methodology.

2.1 Nodule Characterization System

The characterization system is divided into three main sections: segmentation, feature extraction, and classi�ca-
tion. Segmentation was performed using an algorithm developed by Reeves et al.8 Based on a manually speci�ed
seed point, the segmentation algorithm estimated the size and center of the nodule, resampled the image into
isotropic space, and performed morphological �ltering and attached structure removal. Each segmentation was
veri�ed visually. The segmentation step resulted in a binary image indicating which pixels were part of the
nodule, a 3D model of the nodule, and the grayscale region of interest containing the nodule.

These images were used in the feature extraction step, where 2D and 3D morphological, shape, and CT
features were extracted. Two-dimensional features were computed on the slice of the scan which contained the
center of mass of each nodule. In contrast to the previous study,7 not only were both 2D and 3D features used,
but features that were dependent on size were also included. Although size-dependent features should not be
used, they were included because many other studies make use of these features in their characterization systems.

Once features are extracted for each nodule, the nodules are classi�ed using two di�erent classi�ers. One
classi�er, logistic regression, is a parametric method often used for medical applications. Stepwise feature
selection using the Akaike information criterion (AIC) was performed using methods built into the R statistical
package. The AIC rewards performance but penalizes additional parameters which should help to prevent
over�tting. The second classi�er, distance-weighted nearest neighbors (dwNN), was used to assess whether non-
parametric methods would have the same behavior as parametric methods. In this implementation of dwNN,
each feature is weighted by its information gain ratio, which is a measure of the reduction of entropy of the
model contributed by each feature. The classi�er result is the weighted average of the class of each neighbor,
with weighting done by the distance of each neighbor to the nodule under consideration. To generate an ROC
curve, varying thresholds are applied to the classi�er result. For both classi�ers, a leave-one-out training and
testing methodology was used.
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Figure 1. Size distribution of a) full dataset and b) subset of dataset selected to have equal size distribution of malignant
and benign nodules. For each graph, the number on the x-axis represents the maximum size of the bin.

2.2 Data

The full dataset was comprised of 178 nodules, with 100 malignant and 78 benign nodules. Nodules were selected
from the Weill Cornell Medical Center database of solid or part-solid nodules, whose consistency was determined
by a radiologist, and both attached and isolated nodules were included. Part-solid nodules were only included
if they had a substantial solid component. Malignant nodules had a diagnosis con�rmed through biopsy or
resection while benign nodules were either biopsied or listed as having 2 years of no clinical change. Metastatic
nodules and benign calci�cations were excluded from the dataset. Scans were obtained using either GE Medical
Systems HiSpeed CT/i, Genesis HiSpeed, LightSpeed QX/i, or LightSpeed Ultra CT scanners using either 1.0
mm, 1.25 mm, 2.5 mm, or 5.0 mm slice thickness.

A subset of nodules in the full dataset were selected to form a dataset of malignant and benign nodules with
similar size distributions. Nodules between 4.0 mm and 10.0 mm, the range where most of the malignant and
benign nodules overlapped, were selected. These nodules were further pruned to ensure an equal number of
malignant and benign nodules in each of the 6 1.0 mm bins; where possible, malignant and benign nodules were
chosen that were similar in size. A total of 46 nodules (23 malignant, 23 benign) were selected that ful�lled
these criteria. A comparison of the distribution of nodule sizes in the full dataset and the subset of the dataset
is shown in Figure 1. Based on the results of the two-tailed t-test, the full dataset had signi�cant di�erence in
size between malignant and benign nodules (P=0.001) , while the subset of nodules had no signi�cant di�erence
in size (P=0.9283).

2.3 Experiment

The focus of this work is not to report on the absolute performance of the characterization system, but to assess
the e�ect of the underlying size distribution of the nodules in the dataset on performance of characterization
systems. Preliminary work has suggested that the reported performance of a characterization system is dependent
upon the di�erence in size-distribution between malignant and benign nodules.9 To attempt to measure this,
two sets of data are used: one set comprised of all the nodules in the dataset, and a subset of the data selected
to reduce the size bias between malignant and benign nodules, described in the section above. For each dataset,
the performance of characterization systems using 2D and 3D features with and without size was determined
for both classi�ers, resulting in four systems for each dataset and classi�er type, for a total of sixteen di�erent
performance results. ROC curves were generated for each system by varying the threshold for classi�cation on
the system output.

As size may have an e�ect on the performance of the characterization system, a simple size threshold was
applied to each dataset to establish a baseline performance result. Nodules below the size threshold were classi�ed
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Figure 2. ROC curves of simple size threshold classi�er on full dataset and subset of dataset compared to baseline
performance. Note that on the full dataset, the performance of size is higher than baseline, while on the subset of nodules
with similar size distribution of malignant and benign nodules, the performance of size is nearly baseline.

as benign, while nodules equal to, or above the threshold were classi�ed as malignant. The size threshold was
varied across the entire range of nodule sizes in the dataset to generate an ROC curve. Nodule sizes were
computed using the product of the maximum length and the perpendicular (pseudo-WHO), on the central slice
through the nodule.

3. RESULTS

3.1 Full dataset

In the full dataset, the performance from using the simple size threshold was a sensitivity of 73% with a speci�city
of 55% with an area under the ROC curve (AUC) of 0.675. The performance of the size threshold classi�er is
shown in Figure 2 with the performance of the size threshold on the subset of nodules and conventional baseline
measure with an AUC of 0.50.

The results for the characterization system using logistic regression, dwNN, and the size threshold classi�er
are summarized in Table 1. ROC curves for the logistic regression classi�er are shown in Figure 3 for both 2D
and 3D features. The performance of the size threshold classi�er and normal baseline are shown on the plots for
reference. For the 2D features, the AUC was 0.721 for the classi�er with size features and 0.614 without size,
while for the 3D features, the AUC was 0.773 and 0.737 respectively. The dwNN classi�er results are shown in
Figure 4; the performance was, for the 2D features, AUC of 0.709 and 0.631 for features with size and without size
respectively. For 3D features, the AUC was 0.728 and 0.711 for features with size and without size respectively.



Table 1. Summary of performance (AUC) for full dataset for all classi�ers and feature combinations

2D features 3D features

Classi�er size no size size no size

logistic regression 0.721 0.614 0.773 0.737

distance-weighted nearest neighbor 0.709 0.631 0.728 0.711

size threshold 0.675
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Figure 3. ROC curves of characterization system using logistic regression with a) 2D and b) 3D features on the full dataset.
The performance of the size-threshold classi�er and conventional baseline are included for reference.
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Figure 4. ROC curves of system using dwNN classi�er with a) 2D and b) 3D features on the full dataset

3.2 Subset dataset

On the dataset where the distribution of nodules was balanced in terms of size, the baseline performance was near
the conventional baseline on the ROC curve. This corresponded to an AUC of 0.504, with a sensitivity/speci�city
of 42%/47% with the ROC curve shown in Figure 2. For the logistic regression classi�er, di�erent features were
selected for this subset based on AIC as compared to the full set of data; for 2D features with size, two features



Table 2. Summary of performance (AUC) for reduced dataset for all classi�ers and feature combinations

2D features 3D features

Classi�er size no size size no size

logistic regression 0.578 0.478 0.671 0.767

distance-weighted k-NN 0.684 0.616 0.667 0.507

size threshold 0.504
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Figure 5. ROC curves for logistic regression on subset of nodules using a) 2D and b) 3D features
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Figure 6. ROC curves for distance-weighted nearest neighbor on subset of nodules using a) 2D and b) 3D features

were selected, but only one when size was excluded. For the 3D features, �ve non-size features were selected;
although size features were provided in the feature selection step, none were selected. To enable comparison with
a set of size-based features, the same set of features used on the full dataset was used. ROC curves for both 2D
and 3D features are shown in Figure 5a and 5b respectively. The 2D features do very little for the performance,
with the classi�er including size doing marginally better than baseline while the classi�er excluding size performs
worse; the AUC were 0.578 and 0.478 respectively. For the set of 3D features, the AUC was 0.671 with size and
0.767 without size. The dwNN classi�er had an opposite trend, with 2D features with and without size (AUC of
0.684 and 0.616 respectively) performing better than with 3D features with and without size (AUC of 0.667 and
0.507 respectively). The performance for all classi�ers on this subset of nodules is summarized in Table 2.



4. DISCUSSION

Studies have shown that the size of a lesion is a good predictor of malignancy.5,6 However, the use of size as a
feature in characterization systems has several caveats:

1. The size measurement has a very large range; a 3 mm to 30 mm range in lesion diameter corresponds to a
volume range of 1000 to 1.

2. Many of the the other features are dependent on the size of the nodule; for example, average curvature.

3. Given 1 above, the size is related to the accuracy and detail that other feature measurements can be made
on a nodule. As an example, given a typical voxel size for a CT scan of 0.7 x 0.7 x 1.25 mm, a 3 mm nodule
has a volume equivalent to about 23 voxels; given partial volume e�ects, noise, etc., this is inadequate to
provide meaningful values for some of the complex shape-based features.

4. For a dataset with a biased size distribution of malignant and benign nodules, the size (or a size derived
feature) is always the most useful feature.

5. In all published datasets used for training and evaluating nodules for which the size distribution is given,
there is a di�erence in the size of benign and malignant nodules in which small benign and large malignant
nodules predominate. This skewness in the distribution of the dataset re�ects the natural history of lesions
found in lung scans; however, the actual distribution is very sensitive to the population subset from which
the data was acquired; e.g. screening scans would be expected to have a di�erent distribution compared
to clinical scans.

Therefore, in any pulmonary nodule dataset, there is an intrinsic classi�cation performance that can be achieved
by use of a size feature alone that is dataset-speci�c. In general we are interested in a system performance
evaluation that is not highly dependent on a population feature of a particular dataset. With this in mind, many
ROC results that have been published in the literature look very promising but are actually largely characterizing
the size skewness in the training dataset.

To assess the impact that biases in the size distribution of nodules may have on performance, this study used
two datasets with di�erent size distributions. The full dataset of 178 nodules re�ects nodule sizes more typical
of characterization studies. Forty-six nodules were selected for the smaller dataset from the full dataset so that
the size distributions would be as similar as possible. On the full dataset, the simple size-threshold classi�er
achieved an AUC of 0.675, showing improvement over baseline AUC of 0.50. This suggests that the distribution
of malignant and benign nodules in our dataset are more similar than other datasets with a higher sensitivity
and speci�city from size (such as those analyzed by Jirapatnakul et al9). This reduced bias makes this a more
challenging dataset to characterize than most others reported in the literature. The best performance on the
full dataset was an AUC of 0.774 achieved by logistic regression with 3D features including size, which is a large
improvement over the baseline performance, but a smaller improvement compared to the size threshold AUC.
Additionally, in all feature sets on the full dataset, removing size-dependent features reduces performance. This
suggests that size is responsible for a portion of the reported performance of all classi�ers on the full dataset. On
the smaller dataset, the size threshold classi�er achieved an AUC of 0.504, which is near baseline performance,
as expected from a dataset with an equal distribution of sizes of malignant and benign nodules. Accordingly,
performance of the logistic regression classi�er that included size features was reduced compared to the full
dataset; as one example, consider that the characterization system, using the logistic regression classi�er with
2D features that included size, exhibited a reduction in AUC from 0.721 on the full dataset to 0.578 on the subset
of nodules, despite similar levels of optimization performed for both datasets. The logistic regression classi�er
which used 3D features but excluded size-dependent features had the best performance, nearly similar to the
results on the full dataset. However, for the dwNN classi�er, the feature sets that included size both performed
better than without. This may be due to the small number of cases in the subset of the data. The dwNN
classi�er performed worse on the subset of nodules than the full dataset, suggesting the size distribution a�ects
the performance of the dwNN classi�er as well.



Aside from the issue of size, this study considered the performance of 2D and 3D features, both with and
without size-dependent features. On the full dataset, both logistic regression and dwNN classi�ers performed
better with 3D features compared to the 2D features, suggesting that 3D features are more e�ective. This is likely
due to the additional data o�ered by the use of additional slices for the 3D features. Both classi�ers also achieved
higher performance when size-dependent features were included, which is reasonable considering the e�ectiveness
of size for discriminating nodules in this dataset. On the subset of cases with an equal size distribution, for
logistic regression, 3D features were again more e�ective than 2D features, with the best performance o�ered
by 3D features without using size-dependent features. For the 2D features, the system using size-dependent
features performed better, but this may be do to the lack of power of the non-size-dependent features. Results
for the dwNN classi�er di�ered somewhat; the set of 2D features including size achieved the best performance,
with 2D performing better than 3D. The dwNN classi�er us likely harmed by the fact that, for the set of 3D
features, there are nearly as many features as nodules in the dataset, decreasing the e�ectiveness of information
gain weighting of the features.

Finally, the comparison between logistic regression and dwNN was inconclusive. On the full dataset, logistic
regression using 3D features with size achieved the best performance with an AUC of 0.773, while the best
performance using the dwNN classi�er was 0.728 for the same set of features. The logistic regression classi�er
performed better than the dwNN classi�er for three out of the four sets of features. However, the performance
di�erence ranged from 0.012 to 0.045, which is a small amount compared to the di�erence between the feature
sets. Results were also mixed on the subset of nodules, with neither classi�er o�ering a consistent advantage
over the other.

5. CONCLUSION

Pulmonary nodule characterization systems are all trained on datasets with a bias in the size distribution of
malignant and benign nodules. This bias leads to size being a very predictive feature. In the dataset used in
this study, size alone is responsible for a signi�cant improvement (AUC 0.675) over the conventional baseline
(AUC of 0.50). However, the performance from size is available with a simple threshold without the use of a
complex automated characterization system; therefore, the relevant measure of a characterization system is the
performance above and beyond the performance from the a priori size information.

This study showed that size had a positive e�ect on the performance of a system whose dataset had a bias
in the size distributions of malignant and benign nodules. Performance of the system was reduced when trained
and tested on a dataset where the bias in the size distributions was reduced. Comparing 2D and 3D features,
on the full dataset in this study, 3D features were more e�ective than 2D features, with classi�ers using 3D
features performing better than baseline, with or without size. Of the classi�ers using 2D features, only those
with size performed better than baseline. The improved performance of 3D features can likely be attributed
having additional information contained in the additional slices. This result suggests that 3D features are likely
to be superior for nodule characterization, however additional testing is required on larger datasets of similar
size distributions of malignant and benign nodules.

As classi�cation performance is heavily dependent upon the underlying size-distribution of the training and
testing datasets, measurement of system performance should take into account the skewness of the size distri-
butions of the dataset. A more reliable way of reporting the system performance is as the improvement with
respect to just a size feature classi�er, as opposed to the conventional random chance.
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