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ABSTRACT

An estimation of the so called Ground Truth (GT), i.e. the actual lesion region, can minimize readers’ sub-
jectivity if multiple readers’ markings are combined. Two methods perform this estimate by considering the
spatial location of voxels: Thresholded Probability-Map (TPM) and Simultaneous Truth and Performance Level
Estimation (STAPLE). An analysis of these two methods has already been performed. The purpose of this study,
however, is gaining a new insight into the method outcomes by comparing the estimated regions. A subset of the
publicly available Lung Image Database Consortium archive was used, selecting pulmonary nodules documented
by all four radiologists. The TPM estimator was computed by assigning to each voxel a value equal to average
number of readers that included such voxel in their markings and then applying a threshold of 0.5. Our STAPLE
implementation is loosely based on a version from ITK, to which we added the graph cut post-processing. The
pair-wise similarities between the estimated ground truths were analyzed by computing the respective Jaccard
coefficients. Then, the sign test of the differences between the volumes of TPM and STAPLE was performed.
A total of 35 nodules documented on 26 scans by all four radiologists were available. The spatial agreement
had a one-sided 90% Confidence Interval of [0.92, 1.00]. The sign test of the differences had a p-value less than
0.001. We found that (a) the differences in their volume estimates are statistically significant, (b) the spatial
disagreement between the two estimators is almost completely due to the exclusion of voxels marked by exactly
two readers, (c) STAPLE tends to weight more, in its GT estimate, readers marking broader regions.
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1. INTRODUCTION

For lung nodules, estimation of growth rates or of size changes plays a fundamental role both in clinical practice
and in pharmacological research because it enables the determination of the probability of a nodule malignancy
or of the efficacy of a therapy. The accuracy and precision of those estimations are linked, in turn, to the accuracy
and precision of the absolute volume estimations performed on the single imaged instances. With the current
trend toward higher and higher resolutions on the axial dimension, manual volumetric measurement is becoming
more and more demanding, being both time intensive and subject to fatigue; additionally it has been shown1, 2

to have a high intra- and inter- observer variability, albeit better than mono- and bi-dimensional measures.

A reliable automated algorithm would require much less time, mandating only a quality-control review, and
would essentially eliminate the problem of variability by applying the same set of rules to each of the sequential
scans: this is why several efforts have been actively developed.3–8 The difficulty of this approach is now shifted
toward the need to calibrate and validate such methods and, currently, the only accepted source for the definition
of a gold standard is based on nodule boundary markings performed by expert radiologists.

The Lung Image Database Consortium9 is one of the answers to this need. This consortium is a cooperative
program, started by the National Institutes of Health in 2000, aiming at the creation of a large database of whole
lung CT scans, documented by multiple radiologists without a consensus stage, for the development and the
evaluation of different CAD approaches. The availability of such annotated nodules makes the LIDC database
an invaluable source also for the computation of a ground truth (GT) against which automated methods can
be tested. In fact, being able to access multiple readers’ markings makes it possible to generate an estimate
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of the actual lesion that (a) takes into account all those different markings and (b) is expected to be a closer
representation of the actual lesion region because it aims at minimizing the subjectivity of each reader’s marking.

The initial problem of knowing the lesion actual shape, however, has not disappeared: it is now turned into
the evaluation of the methods by which the ground truth is estimated as those methods have become a critical
part of the validation process. In this paper two methods to estimate GTs are analyzed: thresholding at 0.5
of probability maps (TPM0.5) and simultaneous truth and performance estimation (STAPLE). Previously10

a separate analysis of TPM0.5s and STAPLE (without the graph-cut post-processing) was conducted; here, a
detailed comparison of the GT regions created by TPM0.5 and STAPLE is performed.

2. GROUND TRUTH ESTIMATORS

There are several approaches for the estimation of ground truth from several expert readers. In this study,
two of the most used approaches that perform this estimate by considering the spatial location of voxels were
considered: Thresholded Probability-Maps (TPM) and Simultaneous Truth and Performance Level Estimation
(STAPLE). In a Probability-Map,1 the value of a voxel is the weighted average of the values of the voxel in
each reader’s segmentations. For example, if a voxel is labeled as 1 by 3 out of the 4 readers, the voxel will
have a value of 0.75. Using this method, voxels present in all of the readers’ segmentations will have a value of
1, voxels present in none of the segmentations have a value of 0, and voxels in some of the segmentations but
not all will have a value of 0.25, 0.50, or 0.75. To generate an estimated ground truth, the Probability-Map
may be thresholded at a particular value. In this study, the Probability-Maps are thresholded at 0.50 to give a
Thresholded Probability-Map (TPM0.5) that represent the regions marked by 2 or more readers.

The second approach considered in this study is an algorithm proposed by Warfield et al.,11 simultaneous
truth and performance estimation (STAPLE). In this method, the true ground truth is treated as a hidden
variable and therefore not directly observable. Since the true ground truth is unknown, reader performance is
also unknown. This method estimates both the ground truth and reader performance simultaneously using an
expectation-maximization (EM) algorithm. The results of the EM stage are an image similar to a Probability-
Map, with the value of each voxel representing the probability for that voxel to be part of the ground truth,
and the estimated sensitivity and specificity for each reader. In this study, our implementation of the STAPLE
algorithm is loosely based on the version from the National Library of Medicine Insight Segmentation and
Registration Toolkit (ITK)12 to which we added the graph cut post-processing. The STAPLE algorithm can be
initialized by assuming sensitivity and specificity values for each reader, or by assuming an initial ground truth.
Following the authors’ indications,11 all readers are given the same initial sensitivity and specificity as their true
quality is unknown. Thus, the initial ground truth estimate is an equally weighted average of all of the reader
segmentations. Another parameter of the algorithm is the selection of a function for the prior probability that a
pixel is included in the ground truth segmentation. A reasonable value to use is the relative proportion of pixels
marked as belonging to the input segmentations11 and this value is used in this study. The final step of the
STAPLE method is based on the construction of an hidden Markov random field and its use to generate the
actual final estimate. In this step the voxel independence assumption is removed and the respective relationships
of each voxel with its neighbors are used to regularize the EM estimate. The finding of the optimal solution was
realized as a max-flow min-cut, as suggested in11, by a program that we developed, based on the analysis by
Boykov and Kolmogorov13 of the algorithm formulated by Ford and Fulkerson.14

3. MATERIALS AND METHODS

The comparison was performed on whole-lung CT scans provided by the LIDC archive.15 The LIDC process
model16, 17 specifies that each scan is assessed by four experienced thoracic radiologists and that, for nodules
three mm and larger, boundaries are to be marked, in every axial image in which they appear, around the
visible extent of the nodules, which includes the whole range of radiologically detectable tissues from sub-
solid to solid. Radiologist may also mark inner boundaries to express the fact that a portion inside the outer
boundary does not belong to the actual nodule. One of the key tenets of the LIDC process model is the absence
of an explicit consensus stage where only one region is provided as the GT, independently from the actual
number of radiologists that supplied the initial boundaries. Instead a double reading process, performed by every
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radiologist, was established and up to four boundaries are provided for each documented nodule corresponding
to the radiologists’ individual markings. Only nodules marked by all four LIDC radiologists were selected from
the LIDC database. Figure 1 shows a montage of the central slices of a nodule and, overlaid, its documentation
provided by each of the four radiologists in the form of a boundary marking (a-d).

For this paper 100 whole-lung CT scans were available. All of the scans were acquired from multi-detector
row CT scanners with pixel size ranging from 0.508 to 0.762 mm (average 0.64 mm) and an axial slice thickness
ranging from 0.75 to 3.00 mm (average 2.07 mm, median 1.80 mm). The tube current ranged from 40 to 422 mA
(average 134.4 mA, median 75 mA), tube voltage range was for more than half of the cases 120 kVp with the
remaining ones having voltages between 130 and 140 kVp.

After determining the GT estimates for all of the three methods, volumes for the estimates were computed
by counting the number of nodule pixels in each of the image slices and then multiplying their sum by the
voxel volume;18 this method is frequently used in CAD/CADx tools. When expressing the volumes in the uni-
dimensional scale space, like the one used by RECIST,19 the diameter d of the equivalent sphere was used, i.e.

the diameter of a sphere having the same volume as the estimate: d = 2 3

√
3v
4π Then two indicators of the pair-wise

similarities between those estimates were computed: the Fisher sign test of the differences between the respective
estimate volumes and one-sided 90% confidence interval (CI) of the Jaccard coefficients between the respective
estimate regions. The Fisher sign test is used to verify that, given a set of measurement pairs {xi, yi}, xi and
yi are equally likely to be larger than the other by testing the null hypothesis for the differences to follow the
binomial distribution with probability p = 0.5. Given two sets X and Y , the Jaccard coefficient20 measures the
amount of overlap between the two sets and is defined as:

J =
X ∩ Y

X ∪ Y

The analysis was also extended to include an evaluation of the differences between TPM0.5 and the final STAPLE
regions with STAPLE intermediate results, computed after the EM stage, by generating a binary GT estimate
by thresholding the stage output map at a probability of one half (0.5).

(a) (b)

(c) (d)

Figure 1. An example of nodule documentation provided by the LIDC database. In this case a montage of the central
slices of a nodule are displayed and, overlaid, the radiologists’ markings of the nodule boundary. Each montage set (a),
(b), (c), and (d) shows the respective central slice portion of the mark-up of one radiologist.
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It is important to underline that all the GT estimations were performed considering each nodule separately
without being able to extend the reader performance level evaluation to more than a single nodule because no
reader can be tracked among the full set of nodules or even within the same case. This is due to the fact that
all the LIDC data is anonymized, i.e. not only the DICOM image data, but also all the documentation attached
to each scan, and therefore a number of key aspects cannot be known or taken for granted, such as:

• which sites produced the markings (there are five sites cooperating to the LIDC, but only four readers17);

• whether a site has multiple readers and, therefore, what is the actual number of radiologists that contributed
the annotations;

Since for each scan all the nodule documentations are grouped by reader, the only known element is that the
actual readers can be tracked across that limited subset when multiple nodules are present in one scan. However,
this information was not used in order to avoid any disparities in the evaluation of nodules.

4. RESULTS

A total of 35 nodules documented by all four radiologists were selected. The median diameters from the manual
markings ranged from 4.4 to 23.8 mm (mean 11.1 mm, median 7.46 mm). The spatial agreement between the
ground truth estimates of the TPM0.5 and STAPLE had a one-sided 90% C.I. of [0.92, 1.00]: this was reflected
into relative volume differences ranging from -0.3% to 12.3% (average 2.6%, median 1.3%) or, expressing them in
a uni-dimensional scale space, into a range from -0.1% to 4.2% (average 0.9%, median 0.44%). The sign test on
the difference between the volume estimations had a p-value less than 0.001. As regards the differences between
the intermediate EM outputs and the final STAPLE regions, the spatial agreement had a one-sided 90% C.I. of
[0.96, 1.00]; relative volume differences ranged between -0.3% to 7.9% (average 1.6%, median 0.7%) or, expressing
them in a uni-dimensional scale space, into a range from -0.1% to 2.7% (average 0.5%, median 0.2%). The sign
test on the difference between the volume estimations had a p-value less than 0.001.

5. DISCUSSION

The Jaccard coefficients showed a certain degree of disagreement between the two methods, the one-sided sign
test on the volume differences showed that STAPLE volumes are almost always smaller than TPM0.5 ones,
indicating a systematic difference between the two methods, and this motivated us to extend our analysis also
to the output of STAPLE EM stage. The EM estimate is included in the TPM0.5 estimate and includes all the
voxels marked by at least three readers: hence only the voxels marked by exactly two readers are responsible
for making the difference between TPM0.5 and the EM estimate. The analysis showed that the effect of the
max-flow min-cut optimization, that brings to the final results for STAPLE, is that only voxels marked by
exactly two readers are further removed, while very few voxels marked by just one reader may get added.

In only 6 out of 35 nodules (17%) the EM estimate was different from the TPM0.5 estimate and that
prompted further investigation. A key assumption in the theoretical foundation of both methods is voxel spatial
independence: the first part of the STAPLE estimation is performed by the EM stage and then, as we said
previously, the post-processing by a hidden Markov random field takes into account spatial dependence. One of
the other differences between the TPM0.5 and STAPLE concerns each reader’ reliability: the TPM0.5 assumes
each reader as equally reliable and blindly selects all the voxels marked by at least two readers, whereas STAPLE
weights each reader’s reliability according to her agreement with the others. However, while this feature tries
to capture readers’ agreements and disagreements, it may also be affecting the results. In those 6 case, brought
to our attention by the EM result analysis, STAPLE shows the following behavior: (a) when there are two
readers’ markings almost coinciding, which happened in 4 out of 35 cases (i.e. more than 11% of the available
documented nodules), the estimate includes the voxels belonging to these two and excludes almost every other
one, even if marked by both the other two readers, as shown in Figure 2; (b) in the other two cases the reader
that drew the largest region is assigned a higher sensitivity (because the summation of non-zero contributions
spans a larger number of voxels), which in turn increases the probability of belonging to the GT to all the voxels
marked by that reader and excludes the other pairs that are in disagreement. In one case both factors were
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presents, almost coinciding marks, but not identical, and all of the voxels that were part of the largest of the
two were included in the estimated GT.

Figure 2 shows an example when there are two almost completely overlapping boundaries (b) and (c): in this
case STAPLE estimate (f) is determined by that region, while the TPM0.5 GT estimate includes voxels marked
by the other readers. Figure 3, on the other hand, shows a case where STAPLE and TPM0.5 GT estimates
differ thanks to the geometric regularization of the estimate, in STAPLE, owing to the use of the hidden Markov
random field. Final estimates are shown in (f), TPM0.5, and (h), STAPLE, while intermediate outcomes for
the two methods are shown in (e), the probability map before thresholding, and in (g), the output of the EM
stage.

6. CONCLUSIONS

A comparison of the GT regions created by TPM0.5 and STAPLE was performed. We found that (a) the
differences in the volume estimates of TPM0.5 and STAPLE are statistically significant being the volumes of
the TPM0.5 estimated GT almost always grater than STAPLE ones, (b) the spatial disagreement between
the two estimators is almost completely due to the final regularization stage of STAPLE that mostly excludes
voxels marked by exactly two readers, (c) STAPLE results can be affected either by the closeness between two
mark-ups or by the larger regions being favored over smaller ones.
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Figure 2. An example of nodule where two overlapping boundaries, (b) and (c), determine STAPLE estimate (f). Reader
marked regions are displayed in the top part, (a) to (d), while (e) is the TPM0.5 estimate.
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Figure 3. An example of nodule where STAPLE and TPM0.5 estimates differ because of the regularization of the estimate,
in STAPLE, thanks to the use of the hidden Markov random field. Final estimates are shown in (f), TPM0.5, and (h),
STAPLE, while intermediate outcomes for the two methods are shown in (e), the probability map before thresholding,
and in (g), the output of the EM stage.
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